201 research outputs found

    Coherent electron-phonon coupling and polaron-like transport in molecular wires

    Full text link
    We present a technique to calculate the transport properties through one-dimensional models of molecular wires. The calculations include inelastic electron scattering due to electron-lattice interaction. The coupling between the electron and the lattice is crucial to determine the transport properties in one-dimensional systems subject to Peierls transition since it drives the transition itself. The electron-phonon coupling is treated as a quantum coherent process, in the sense that no random dephasing due to electron-phonon interactions is introduced in the scattering wave functions. We show that charge carrier injection, even in the tunneling regime, induces lattice distortions localized around the tunneling electron. The transport in the molecular wire is due to polaron-like propagation. We show typical examples of the lattice distortions induced by charge injection into the wire. In the tunneling regime, the electron transmission is strongly enhanced in comparison with the case of elastic scattering through the undistorted molecular wire. We also show that although lattice fluctuations modify the electron transmission through the wire, the modifications are qualitatively different from those obtained by the quantum electron-phonon inelastic scattering technique. Our results should hold in principle for other one-dimensional atomic-scale wires subject to Peierls transitions.Comment: 21 pages, 8 figures, accepted for publication in Phys. Rev. B (to appear march 2001

    Density functional method for nonequilibrium electron transport

    Get PDF
    We describe an ab initio method for calculating the electronic structure, electronic transport, and forces acting on the atoms, for atomic scale systems connected to semi-infinite electrodes and with an applied voltage bias. Our method is based on the density functional theory (DFT) as implemented in the well tested Siesta approach (which uses non-local norm-conserving pseudopotentials to describe the effect of the core electrons, and linear combination of finite-range numerical atomic orbitals to describe the valence states). We fully deal with the atomistic structure of the whole system, treating both the contact and the electrodes on the same footing. The effect of the finite bias (including selfconsistency and the solution of the electrostatic problem) is taken into account using nonequilibrium Green's functions. We relate the nonequilibrium Green's function expressions to the more transparent scheme involving the scattering states. As an illustration, the method is applied to three systems where we are able to compare our results to earlier ab initio DFT calculations or experiments, and we point out differences between this method and existing schemes. The systems considered are: (1) single atom carbon wires connected to aluminum electrodes with extended or finite cross section, (2) single atom gold wires, and finally (3) large carbon nanotube systems with point defects.Comment: 18 pages, 23 figure

    Physical activity attenuates the influence of FTO variants on obesity risk: A meta-analysis of 218,166 adults and 19,268 children

    Get PDF
    Background: The FTO gene harbors the strongest known susceptibility locus for obesity. While many individual studies have suggested that physical activity (PA) may attenuate the effect of FTO on obesity risk, other studies have not been able to confirm this interaction. To confirm or refute unambiguously whether PA attenuates the association of FTO with obesity risk, we meta-analyzed data from 45 studies of adults (n = 218,166) and nine studies of children and adolescents (n = 19,268). Methods and Findings: All studies identified to have data on the FTO rs9939609 variant (or any proxy [r2>0.8]) and PA were invited to participate, regardless of ethnicity or age of the participants. PA was standardized by categorizing it into a dichotomous variable (physically inactive versus active) in each study. Overall, 25% of adults and 13% of children were categorized as inactive. Interaction analyses were performed within each study by including the FTO×PA interaction term in an additive model, adjusting for age and sex. Subsequently, random effects meta-analysis was used to pool the interaction terms. In adults, the minor (A-) allele of rs9939609 increased the odds of obesity by 1.23-fold/allele (95% CI 1.20-1.26), but PA attenuated this effect (pinteraction= 0.001). More specifically, the minor allele of rs9939609 increased the odds of obesity less in the physically active group (odds ratio = 1.22/allele, 95% CI 1.19-1.25) than in the inactive group (odds ratio = 1.30/allele, 95% CI 1.24-1.36). No such interaction was found in children and adolescents. Concl

    Disease trajectories, place and mode of death in people with head and neck cancer: findings from the ‘Head and Neck 5000’ population-based prospective clinical cohort study

    Get PDF
    Background: Few large studies describe initial disease trajectories and subsequent mortality in people with head and neck cancer. This is a necessary first step to identify the need for palliative care and associated services. Aim: To analyse data from the Head and Neck 5000 study to present mortality, place and mode of death within 12 months of diagnosis. Design: Prospective cohort study. Participants: In total, 5402 people with a new diagnosis of head and neck cancer were recruited from 76 cancer centres in the United Kingdom between April 2011 and December 2014. Results: Initially, 161/5402 (3%) and 5241/5402 (97%) of participants were treated with ‘non-curative’ and ‘curative’ intent respectively. Within 12 months, 109/161 (68%) in the ‘non-curative’ group died compared with 482/5241 (9%) in the ‘curative’ group. Catastrophic bleed was the terminal event for 10.4% and 9.8% of people in ‘non-curative’ and ‘curative’ groups respectively; terminal airway obstruction was recorded for 7.5% and 6.3% of people in the same corresponding groups. Similar proportions of people in both groups died in a hospice (22.9% ‘non-curative’; 23.5% ‘curative’) and 45.7% of the ‘curative’ group died in hospital. Conclusions: In addition to those with incurable head and neck cancer, there is a small but significant ‘curative’ subgroup of people who may have palliative needs shortly following diagnosis. Given the high mortality, risk of acute catastrophic event and frequent hospital death, clarifying the level and timing of palliative care services engagement would help provide assurance as to whether palliative care needs are being met

    Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus

    Get PDF
    A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10-20), ER-negative BC (P=1.1 × 10-13), BRCA1-associated BC (P=7.7 × 10-16) and triple negative BC (P-diff=2 × 10-5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10-3) and ABHD8 (P<2 × 10-3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3′-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk

    Multiplicity dependence of charged-particle intra-jet properties in pp collisions at √s = 13 TeV

    Get PDF
    The first measurement of the multiplicity dependence of intra-jet properties of leading charged-particle jets in proton–proton (pp) collisions is reported. Themean chargedparticle multiplicity and jet fragmentation distributions are measured in minimum-bias and high-multiplicity pp collisions at center-of-mass energy √s = 13 TeV using the ALICE detector. Jets are reconstructed from charged particles produced in the midrapidity region (|η| < 0.9) using the sequential recombination anti-kT algorithm with jet resolution parameters R = 0.2, 0.3, and 0.4 for the transverse momentum (pT) interval 5–110 GeV/c. The highmultiplicity events are selected by the forward V0 scintillator detectors. The mean charged-particle multiplicity inside the leading jet cone rises monotonically with increasing jet pT in qualitative agreement with previous measurements at lower energies. The distributions of jet fragmentation function variables zch and ξ ch are measured for different jet-pT intervals. Jet-pT independent fragmentation of leading jets is observed for wider jets except at high- and low-zch values. The observed “hump-backed plateau” structure in the ξ ch distribution indicates suppression of low-pT particles. In high-multiplicity events, an enhancement of the fragmentation probability of low-zch particles accompanied by a suppression of high-zch particles is observed compared to minimum-bias events. This behavior becomes more prominent for low-pT jets with larger jet radius. The results are compared with predictions of QCD-inspired event generators, PYTHIA8 with Monash 2013 tune and EPOS LHC. It is found that PYTHIA8 qualitatively reproduces the jet modification in high-multiplicity events except at high jet pT. These measurements provide important constraints to models of jet fragmentation.publishedVersio

    Investigating strangeness enhancement with multiplicity in pp collisions using angular correlations

    Get PDF
    A study of strange hadron production associated with hard scattering processes and with the underlying event is conducted to investigate the origin of the enhanced production of strange hadrons in small collision systems characterised by large charged-particle multiplicities. For this purpose, the production of the single-strange meson KS0 and the double-strange baryon Ξ± is measured, in each event, in the azimuthal direction of the highest-pT particle (“trigger” particle), related to hard scattering processes, and in the direction transverse to it in azimuth, associated with the underlying event, in pp collisions at s = 5.02 TeV and s = 13 TeV using the ALICE detector at the LHC. The per-trigger yields of KS0 and Ξ± are dominated by the transverse-to-leading production (i.e., in the direction transverse to the trigger particle), whose contribution relative to the toward-leading production is observed to increase with the event charged-particle multiplicity. The transverse-to-leading and the toward-leading Ξ±/KS0 yield ratios increase with the multiplicity of charged particles, suggesting that strangeness enhancement with multiplicity is associated with both hard scattering processes and the underlying event. The relative production of Ξ± with respect to KS0 is higher in transverse-to-leading processes over the whole multiplicity interval covered by the measurement. The KS0 and Ξ± per-trigger yields and yield ratios are compared with predictions of three different phenomenological models, namely Pythia8.2 with the Monash tune, Pythia8.2 with ropes and EPOS LHC. The comparison shows that none of them can quantitatively describe either the transverse-to-leading or the toward-leading yields of KS0 and Ξ±.publishedVersio

    Search for jet quenching effects in high-multiplicity pp collisions at √ s = 13 TeV via di-jet acoplanarity

    Get PDF
    The ALICE Collaboration reports a search for jet quenching effects in highmultiplicity (HM) proton-proton collisions at √ s = 13TeV, using the semi-inclusive azimuthaldifference distribution Δφ of charged-particle jets recoiling from a high transverse momentum (high-pT,trig) trigger hadron. Jet quenching may broaden the Δφ distribution measured in HM events compared to that in minimum bias (MB) events. The measurement employs a pT,trig-differential observable for data-driven suppression of the contribution of multiple partonic interactions, which is the dominant background. While azimuthal broadening is indeed observed in HM compared to MB events, similar broadening for HM events is observed for simulations based on the PYTHIA 8 Monte Carlo generator, which does not incorporate jet quenching. Detailed analysis of these data and simulations show that the azimuthal broadening is due to bias of the HM selection towards events with multiple jets in the final state. The identification of this bias has implications for all jet quenching searches where selection is made on the event activity.publishedVersio
    corecore