215 research outputs found
An immunohistochemically positive E-cadherin status is not always predictive for a good prognosis in human breast cancer
BACKGROUND:
in primary breast cancers dichotomic classification of E-cadherin expression, according to an arbitrary cutoff, may be inadequate and lead to loss of prognostic significance or contrasting prognostic indications. We aimed to assess the prognostic value of high and low E-cadherin levels in a consecutive case series (204 cases) of unilateral node-negative non-lobular breast cancer patients with a 8-year median follow-up and that did not receive any adjuvant therapy after surgery.
METHODS:
expression of E-cadherin was investigated by immunohistochemistry and assessed according to conventional score (0, 1+, 2+, 3+). Multiple correspondence analysis was used to visualise associations of both categorical and continuous variables. The impact of E-cadherin expression on patients outcome was evaluated in terms of event-free survival curves by the Kaplan-Meier method and proportional hazard Cox model.
RESULTS:
respect to intermediate E-cadherin expression values (2+), high (3+) or low (0 to 1+) E-cadherin expression levels had a negative prognostic impact. In fact, both patients with a low-to-nil (score 0 to 1+) expression level of E-cadherin and patients with a high E-cadherin expression level (score 3+) demonstrated an increased risk of failure (respectively, hazard ratio (HR)=1.71, confidence interval (CI)=0.72-4.06 and HR=4.22, CI=1.406-12.66) and an interesting association with young age.
CONCLUSIONS:
the findings support the evidence that high expression values of E-cadherin are not predictive for a good prognosis and may help to explain conflicting evidence on the prognostic impact of E-cadherin in breast cancer when assessed on dichotomic basis
An intestinal epithelial defect conferring ER stress results in inflammation involving both innate and adaptive immunity
We recently characterized Winnie mice carrying a missense mutation in Muc2, leading to severe endoplasmic reticulum stress in intestinal goblet cells and spontaneous colitis. In this study, we characterized the immune responses due to this intestinal epithelial dysfunction. In Winnie, there was a fourfold increase in activated dendritic cells (DCs; CD11c+ major histocompatibility complex (MHC) class IIhi) in the colonic lamina propria accompanied by decreased colonic secretion of an inhibitor of DC activation, thymic stromal lymphopoietin (TSLP). Winnie also displayed a significant increase in mRNA expression of the mucosal TH17 signature genes Il17a, IL17f, Tgfb, and Ccr6, particularly in the distal colon. Winnie mesenteric lymph node leukocytes secreted multiple TH1, TH2, and TH17 cytokines on activation, with a large increase in interleukin-17A (IL-17A) progressively with age. A major source of mucosal IL-17A in Winnie was CD4+ T lymphocytes. Loss of T and B lymphocytes in Rag1-/- × Winnie (RaW) crosses did not prevent spontaneous inflammation but did prevent progression with age in the colon but not the cecum. Adoptive transfer of naive T cells into RaW mice caused more rapid and severe colitis than in Rag1-/-, indicating that the epithelial defect results in an intestinal microenvironment conducive to T-cell activation. Thus, the Winnie primary epithelial defect results in complex multicytokine-mediated colitis involving both innate and adaptive immune components with a prominent IL-23/TH17 response, similar to that of human ulcerative colitis
17β-Oestradiol treatment modulates nitric oxide synthase activity in MDA231 tumour with implications on growth and radiation response
The putative oestrogen receptor negative human breast cancer cell line MDA231, when grown as tumours in mice continually receiving 17β-oestradiol, showed substantially increased growth rate when compared to control animals. Further, we observed that 17β-oestradiol treatment could both increase the growth rate of established MDA231 tumours as well as decreasing the time taken for initiating tumour growth. We have also demonstrated that this increase in growth rate is accompanied by a four-fold increase in nitric oxide synthase activity, which was predominantly the inducible form. Inducible-nitric oxide synthase expression in these tumours was confirmed by immunohistochemical analysis and appeared localized primarily in areas between viable and necrotic regions of the tumour (an area that is presumably hypoxic). Prophylactic treatment with the nitric oxide synthase inhibitor nitro-L-arginine methyl ester resulted in significant reduction in this apparent 17β-oestradiol-mediated growth promoting effect. Tumours derived from mice receiving 17β-oestradiol-treatment were characterized by a significantly lower fraction of perfused blood vessels and an indication of an increased hypoxic fraction. Consistent with these observations, 17β-oestradiol-treated tumours were less radio-responsive compared to control tumours when treated with a single radiation dose of 15 Gy. Our data suggests that long-term treatment with oestrogen could significantly alter the tumour oxygenation status during breast tumour progression, thus affecting response to radiotherapy
Paradoxical regulation of Bcl-2 family proteins by 17β-oestradiol in human breast cancer cells MCF-7
Tumorigenesis is related to the dysregulation of cell growth or cell death pathways. Hence, elucidation of the mechanisms involved in the modulation of pro- or anti-apoptotic proteins is important in furthering understanding of breast cancer aetiology and may aid in designing prevention and treatment strategies. In the present study, we examined the role of 17β-oestradiol on the regulation of apoptosis in the breast cancer cell line MCF-7. Using multi-probe RNAase protection assays, we found changes in the mRNA levels of several Bcl-2 family proteins upon treatment of MCF-7 cells with 17β-oestradiol. Unexpectedly, we found a paradoxical effects of 17β-oestradiol on two anti-apoptotic proteins Bcl-2 and Bcl-x. Treatment with 17β-oestradiol resulted in up-regulation of Bcl-2 mRNA and protein, but down-regulated Bcl-x(L) mRNA and protein. The effect of 17β-oestradiol on Bcl-x(L) occurred at concentration-dependent fashion. The effect was specific to 17β-oestradiol since other steroid hormones exert no effect on Bcl-x(L). Tamoxifen, an anti-oestrogen, blocked the down-regulation of Bcl-x(L) by 17β-oestradiol demonstrating this effect is oestrogen receptor-dependent. We speculate that different members of the Bcl-2 family proteins may be regulated through different pathway and these pathways may be modulated by 17β-oestradiol. © 1999 Cancer Research Campaig
Muc2 Protects against Lethal Infectious Colitis by Disassociating Pathogenic and Commensal Bacteria from the Colonic Mucosa
Despite recent advances in our understanding of the pathogenesis of attaching and effacing (A/E) Escherichia coli infections, the mechanisms by which the host defends against these microbes are unclear. The goal of this study was to determine the role of goblet cell-derived Muc2, the major intestinal secretory mucin and primary component of the mucus layer, in host protection against A/E pathogens. To assess the role of Muc2 during A/E bacterial infections, we inoculated Muc2 deficient (Muc2−/−) mice with Citrobacter rodentium, a murine A/E pathogen related to diarrheagenic A/E E. coli. Unlike wildtype (WT) mice, infected Muc2−/− mice exhibited rapid weight loss and suffered up to 90% mortality. Stool plating demonstrated 10–100 fold greater C. rodentium burdens in Muc2−/− vs. WT mice, most of which were found to be loosely adherent to the colonic mucosa. Histology of Muc2−/− mice revealed ulceration in the colon amid focal bacterial microcolonies. Metabolic labeling of secreted mucins in the large intestine demonstrated that mucin secretion was markedly increased in WT mice during infection compared to uninfected controls, suggesting that the host uses increased mucin release to flush pathogens from the mucosal surface. Muc2 also impacted host-commensal interactions during infection, as FISH analysis revealed C. rodentium microcolonies contained numerous commensal microbes, which was not observed in WT mice. Orally administered FITC-Dextran and FISH staining showed significantly worsened intestinal barrier disruption in Muc2−/− vs. WT mice, with overt pathogen and commensal translocation into the Muc2−/− colonic mucosa. Interestingly, commensal depletion enhanced C. rodentium colonization of Muc2−/− mice, although colonic pathology was not significantly altered. In conclusion, Muc2 production is critical for host protection during A/E bacterial infections, by limiting overall pathogen and commensal numbers associated with the colonic mucosal surface. Such actions limit tissue damage and translocation of pathogenic and commensal bacteria across the epithelium
Search for non-Gaussian events in the data of the VIRGO E4 engineering run
International audienc
The gravitational wave detector VIRGO
International audienc
The Virgo data acquisition system
International audienc
Gut mucosal DAMPs in IBD: From mechanisms to therapeutic implications
Endogenous damage-associated molecular patterns (DAMPs) are released during tissue damage and have increasingly recognized roles in the etiology of many human diseases. The inflammatory bowel diseases (IBD), ulcerative colitis (UC) and Crohn’s disease (CD), are immune-mediated conditions where high levels of DAMPs are observed. DAMPs such as calprotectin (S100A8/9) have an established clinical role as a biomarker in IBD. In this review, we use IBD as an archetypal common chronic inflammatory disease to focus on the conceptual and evidential importance of DAMPs in pathogenesis and why DAMPs represent an entirely new class of targets for clinical translation. </p
- …