42 research outputs found

    DNA methylation patterns in bladder cancer and washing cell sediments: a perspective for tumor recurrence detection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epigenetic alterations are a hallmark of human cancer. In this study, we aimed to investigate whether aberrant DNA methylation of cancer-associated genes is related to urinary bladder cancer recurrence.</p> <p>Methods</p> <p>A set of 4 genes, including <it>CDH1 </it>(E-cadherin), <it>SFN </it>(stratifin), <it>RARB </it>(retinoic acid receptor, beta) and <it>RASSF1A </it>(Ras association (RalGDS/AF-6) domain family 1), had their methylation patterns evaluated by MSP (Methylation-Specific Polymerase Chain Reaction) analysis in 49 fresh urinary bladder carcinoma tissues (including 14 cases paired with adjacent normal bladder epithelium, 3 squamous cell carcinomas and 2 adenocarcinomas) and 24 cell sediment samples from bladder washings of patients classified as cancer-free by cytological analysis (control group). A third set of samples included 39 archived tumor fragments and 23 matched washouts from 20 urinary bladder cancer patients in post-surgical monitoring. After genomic DNA isolation and sodium bisulfite modification, methylation patterns were determined and correlated with standard clinic-histopathological parameters.</p> <p>Results</p> <p><it>CDH1 </it>and <it>SFN </it>genes were methylated at high frequencies in bladder cancer as well as in paired normal adjacent tissue and exfoliated cells from cancer-free patients. Although no statistically significant differences were found between <it>RARB </it>and <it>RASSF1A </it>methylation and the clinical and histopathological parameters in bladder cancer, a sensitivity of 95% and a specificity of 71% were observed for <it>RARB </it>methylation (Fisher's Exact test (p < 0.0001; OR = 48.89) and, 58% and 17% (p < 0.05; OR = 0.29) for <it>RASSF1A </it>gene, respectively, in relation to the control group.</p> <p>Conclusion</p> <p>Indistinct DNA hypermethylation of <it>CDH1 </it>and <it>SFN </it>genes between tumoral and normal urinary bladder samples suggests that these epigenetic features are not suitable biomarkers for urinary bladder cancer. However, <it>RARB </it>and <it>RASSF1A </it>gene methylation appears to be an initial event in urinary bladder carcinogenesis and should be considered as defining a panel of differentially methylated genes in this neoplasia in order to maximize the diagnostic coverage of epigenetic markers, especially in studies aiming at early recurrence detection.</p

    Directed Differentiation of Neural Progenitors into Neurons Is Accompanied by Altered Expression of P2X Purinergic Receptors

    No full text
    Neural differentiation has been extensively studied in vitro in a model termed neurospheres, which consists of aggregates of neural progenitor cells. Previous studies suggest that they have a great potential for the treatment of neurological disorders. One of the major challenges for scientists is to control cell fate and develop ideal culture conditions for neurosphere expansion in vitro, without altering their features. Similar to human neural progenitors, rat neurospheres cultured in the absence of epidermal and fibroblast growth factors for a short period increased the levels of beta-3 tubulin and decreased the expression of glial fibrillary acidic protein and nestin, compared to neurospheres cultured in the presence of these factors. In this work, we show that rat neurospheres cultured in suspension under mitogen-free condition presented significant higher expression of P2X2 and P2X6 receptor subunits, when compared to cells cultured in the presence of growth factors, suggesting a direct relationship between P2X2/6 receptor expression and induction of neuronal differentiation in mitogen-free cultured rat neurospheres.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq

    The Snake Venom Peptide Bj-PRO-7a Is a M1 Muscarinic Acetylcholine Receptor Agonist

    No full text
    Proline-rich peptides from Bothrops jararaca venom (Bj-PRO) were characterized based on the capability to inhibit the somatic angiotensin-converting enzyme. the pharmacological action of these peptides resulted in the development of Captopril, one of the best examples of a target-driven drug discovery for treatment of hypertension. However, biochemical and biological properties of Bj-PROs were not completely elucidated yet, and many recent studies have suggested that their activity relies on angiotensin-converting enzyme-independent mechanisms. Here, we show that Bj-PRO-7a (<EDGPIPP) specifically activates [Ca(2+)](i) transients in CHO-M1 cells expressing heterologous rat M1 muscarinic subtype. the activation curve established by microfluorimetry in CHO-M1 cells using increasing concentrations of Bj-PRO-7a reached the maximum response in the presence of 3 mu M Bj-PRO-7a (EC(50) = 0.25 +/- 0.07 mu M). the variation observed by calcium imaging in these cells ranged from 52 to 1218 nM (EC(50) = 0.31 +/- 0.12 mu M). [Ca(2+)](i) responses in CHO-M1 cells were largely inhibited by pirenzepine, a specific M1 antagonist. Neural-differentiated P19 cells expressing endogenous M1 receptors were also responsive to Bj-PRO-7a application, whereas no such response was observed in undifferentiated P19 cells not expressing muscarinic receptors. As further support for its specific action on M1 receptors, the peptide did not activate M3 subtypes in transfected CHO cells. Our findings provide a novel M1 muscarinic receptor agonist that could be used for basic research and even for pharmacological applications. (C) 2010 International Society for Advancement of CytometryFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Univ São Paulo, Inst Quim, Dept Bioquim, BR-01498 São Paulo, BrazilInst Butantan, Ctr Appl Toxinol CAT CEPID, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Farmacol, São Paulo, BrazilUniv São Paulo, Inst Ciencias Biomed, Dept Biol Celular & Dev, BR-05508 São Paulo, BrazilUniversidade Federal de São Paulo, Dept Farmacol, São Paulo, BrazilCNPq: 2006/61285-9Web of Scienc

    Bradykinin promotes neuron-generating division of neural progenitor cells through ERK activation

    Get PDF
    During brain development, cells proliferate, migrate and differentiate in highly accurate patterns. In this context, published results indicate that bradykinin functions in neural fate determination, favoring neurogenesis and migration. However, mechanisms underlying bradykinin function are yet to be explored. Our findings indicate a previously unidentified role for bradykinin action in inducing neurongenerating division in vitro and in vivo, given that bradykinin lengthened the G1-phase of the neural progenitor cells (NPC) cycle and increased TIS21 (also known as PC3 and BTG2) expression in hippocampus from newborn mice. This role, triggered by activation of the kinin-B2 receptor, was conditioned by ERK1/2 activation. Moreover, immunohistochemistry analysis of hippocampal dentate gyrus showed that the percentage of Ki67+ cells markedly increased in bradykinin-treated mice, and ERK1/2 inhibition affected this neurogenic response. The progress of neurogenesis depended on sustained ERK phosphorylation and resulted in ERK1/2 translocation to the nucleus in NPCs and PC12 cells, changing expression of genes such as Hes1 and Ngn2 (also known as Neurog2). In agreement with the function of ERK in integrating signaling pathways, effects of bradykinin in stimulating neurogenesis were reversed following removal of protein kinase C (PKC)-mediated sustained phosphorylation

    Natural intracellular peptides can modulate the interactions of mouse brain proteins and thimet oligopeptidase with 14‐3‐3ε and calmodulin

    No full text
    Protein interactions are crucial for most cellular process. Thus, rationally designed peptides that act as competitive assembly inhibitors of protein interactions by mimicking specific, determined structural elements have been extensively used in clinical and basic research. Recently, mammalian cells have been shown to contain a large number of intracellular peptides of unknown function. Here, we investigate the role of several of these natural intracellular peptides as putative modulators of protein interactions that are related to Ca2+‐calmodulin (CaM) and 14‐3‐3ε, which are proteins that are related to the spatial organization of signal transduction within cells. At concentrations of 1–50 μM, most of the peptides that are investigated in this study modulate the interactions of CaM and 14‐3‐3ε with proteins from the mouse brain cytoplasm or recombinant thimet oligopeptidase (EP24.15) in vitro, as measured by surface plasmon resonance. One of these peptides (VFDVELL; VFD‐7) increases the cytosolic Ca2+ concentration in a dose‐dependent manner but only if introduced into HEK293 cells, which suggests a wide biological function of this peptide. Therefore, it is exciting to suggest that natural intracellular peptides are novel modulators of protein interactions and have biological functions within cells121726412655CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP559698/2009-7Sem informaçã
    corecore