46 research outputs found

    Xenopus Meiotic Microtubule-Associated Interactome

    Get PDF
    In metazoan oocytes the assembly of a microtubule-based spindle depends on the activity of a large number of accessory non-tubulin proteins, many of which remain unknown. In this work we isolated the microtubule-bound proteins from Xenopus eggs. Using mass spectrometry we identified 318 proteins, only 43 of which are known to bind microtubules. To integrate our results, we compiled for the first time a network of the meiotic microtubule-related interactome. The map reveals numerous interactions between spindle microtubules and the newly identified non-tubulin spindle components and highlights proteins absent from the mitotic spindle proteome. To validate newly identified spindle components, we expressed as GFP-fusions nine proteins identified by us and for first time demonstrated that Mgc68500, Loc398535, Nif3l1bp1/THOC7, LSM14A/RAP55A, TSGA14/CEP41, Mgc80361 and Mgc81475 are associated with spindles in egg extracts or in somatic cells. Furthermore, we showed that transfection of HeLa cells with siRNAs, corresponding to the human orthologue of Mgc81475 dramatically perturbs spindle formation in HeLa cells. These results show that our approach to the identification of the Xenopus microtubule-associated proteome yielded bona fide factors with a role in spindle assembly

    Secretion of Novel SEL1L Endogenous Variants Is Promoted by ER Stress/UPR via Endosomes and Shed Vesicles in Human Cancer Cells

    Get PDF
    We describe here two novel endogenous variants of the human endoplasmic reticulum (ER) cargo receptor SEL1LA, designated p38 and p28. Biochemical and RNA interference studies in tumorigenic and non-tumorigenic cells indicate that p38 and p28 are N-terminal, ER-anchorless and more stable relative to the canonical transmembrane SEL1LA. P38 is expressed and constitutively secreted, with increase after ER stress, in the KMS11 myeloma line and in the breast cancer lines MCF7 and SKBr3, but not in the non-tumorigenic breast epithelial MCF10A line. P28 is detected only in the poorly differentiated SKBr3 cell line, where it is secreted after ER stress. Consistently with the presence of p38 and p28 in culture media, morphological studies of SKBr3 and KMS11 cells detect N-terminal SEL1L immunolabeling in secretory/degradative compartments and extracellularly-released membrane vesicles. Our findings suggest that the two new SEL1L variants are engaged in endosomal trafficking and secretion via vesicles, which could contribute to relieve ER stress in tumorigenic cells. P38 and p28 could therefore be relevant as diagnostic markers and/or therapeutic targets in cancer

    A Freely Soluble, High Electron Affinity Molecular Dopant for Solution Processing of Organic Semiconductors

    Get PDF
    Molecular dopants are increasingly studied to enhance the conductivity of semiconducting polymers. Most available p-type dopants have low solubility in common solvents and moderate electron affinities (EA), which makes solution processing difficult and limits the range of semiconducting polymers that can be doped. Here, we describe the synthesis and characterization of the new molecular dopant TMCN3-CP, which has an EA of ?5.5 eV. We show that high ionization energy alternating copolymers such as PDPP-4T, PDPP-3T, and PDPP-T-TT-T can be p-type doped and achieve high conductivities with TMCN3-CP using sequential solution processing. The main advantage of this new dopant is the ability to chemically tailor the ester groups, which we demonstrate here for sequential solution doping of films. Sequential solution processing allows a greater ability to control the film morphology and is also desirable for scale-up to large-area polymer electronics
    corecore