167 research outputs found
Minority Becomes Majority in Social Networks
It is often observed that agents tend to imitate the behavior of their
neighbors in a social network. This imitating behavior might lead to the
strategic decision of adopting a public behavior that differs from what the
agent believes is the right one and this can subvert the behavior of the
population as a whole.
In this paper, we consider the case in which agents express preferences over
two alternatives and model social pressure with the majority dynamics: at each
step an agent is selected and its preference is replaced by the majority of the
preferences of her neighbors. In case of a tie, the agent does not change her
current preference. A profile of the agents' preferences is stable if the
preference of each agent coincides with the preference of at least half of the
neighbors (thus, the system is in equilibrium).
We ask whether there are network topologies that are robust to social
pressure. That is, we ask if there are graphs in which the majority of
preferences in an initial profile always coincides with the majority of the
preference in all stable profiles reachable from that profile. We completely
characterize the graphs with this robustness property by showing that this is
possible only if the graph has no edge or is a clique or very close to a
clique. In other words, except for this handful of graphs, every graph admits
at least one initial profile of preferences in which the majority dynamics can
subvert the initial majority. We also show that deciding whether a graph admits
a minority that becomes majority is NP-hard when the minority size is at most
1/4-th of the social network size.Comment: To appear in WINE 201
Characterizing Interdisciplinarity of Researchers and Research Topics Using Web Search Engines
Researchers' networks have been subject to active modeling and analysis.
Earlier literature mostly focused on citation or co-authorship networks
reconstructed from annotated scientific publication databases, which have
several limitations. Recently, general-purpose web search engines have also
been utilized to collect information about social networks. Here we
reconstructed, using web search engines, a network representing the relatedness
of researchers to their peers as well as to various research topics.
Relatedness between researchers and research topics was characterized by
visibility boost-increase of a researcher's visibility by focusing on a
particular topic. It was observed that researchers who had high visibility
boosts by the same research topic tended to be close to each other in their
network. We calculated correlations between visibility boosts by research
topics and researchers' interdisciplinarity at individual level (diversity of
topics related to the researcher) and at social level (his/her centrality in
the researchers' network). We found that visibility boosts by certain research
topics were positively correlated with researchers' individual-level
interdisciplinarity despite their negative correlations with the general
popularity of researchers. It was also found that visibility boosts by
network-related topics had positive correlations with researchers' social-level
interdisciplinarity. Research topics' correlations with researchers'
individual- and social-level interdisciplinarities were found to be nearly
independent from each other. These findings suggest that the notion of
"interdisciplinarity" of a researcher should be understood as a
multi-dimensional concept that should be evaluated using multiple assessment
means.Comment: 20 pages, 7 figures. Accepted for publication in PLoS On
Recommended from our members
A Multilevel Measurement Model of Social Cohesion
In spite of its currency both in academic research and political rhetoric, there are numerous attempts to define and conceptualize the social cohesion concept but there has been paid little attention to provide a rigorous and empirically tested definition. There are even fewer studies that address social cohesion in a framework of cross-cultural validation of the indicators testing the equivalence of the factorial structure across countries. Finally, as far as we know there is no study that attempt to provide an empirically tested multilevel definition of social cohesion specifying a Multilevel Structural Equation Model. This study aims to cover this gap. First, we provide a theoretical construct of social cohesion taking into account not only its multidimensionality but also its multilevel structure. In the second step, to test the validity of this theoretical construct, we perform a multilevel confirmatory factor analysis in order to verify if the conceptual structure suggested in first step holds. In addition, we test the cross-level structural equivalence and the measurement invariance of the model in order to verify if the same multilevel model of social cohesion holds across the 29 countries analysed. In the final step, we specify a second-order multilevel CFA model in order to identify the existence of a general factor that can be called “social cohesion” operating in society that accounts for the surface phenomena that we observe
Recommended from our members
Farmer attitudes and livestock disease: exploring citizenship behaviour and peer monitoring across two BVD control schemes in the UK
The eradication of BVD in the UK is technically possible but appears to be socially untenable. The following study explored farmer attitudes to BVD control schemes in relation to advice networks and information sharing, shared aims and goals, motivation and benefits of membership, notions of BVD as a priority disease and attitudes toward regulation. Two concepts from the organisational management literature framed the study: citizenship behaviour where actions of individuals support the collective good (but are not explicitly recognised as such) and peer to peer monitoring (where individuals evaluate other’s behaviour). Farmers from two BVD control schemes in the UK participated in the study: Orkney Livestock Association BVD Eradication Scheme and Norfolk and Suffolk Cattle Breeders Association BVD Eradication Scheme. In total 162 farmers participated in the research (109 in-scheme and 53 out of scheme). The findings revealed that group helping and information sharing among scheme members was low with a positive BVD status subject to social censure. Peer monitoring in the form of gossip with regard to the animal health status of other farms was high. Interestingly, farmers across both schemes supported greater regulation with regard to animal health, largely due to the mistrust of fellow farmers following voluntary disease control measures. While group cohesiveness varied across the two schemes, without continued financial inducements, longer-term sustainability is questionabl
Network deconvolution as a general method to distinguish direct dependencies in networks
Recognizing direct relationships between variables connected in a network is a pervasive problem in biological, social and information sciences as correlation-based networks contain numerous indirect relationships. Here we present a general method for inferring direct effects from an observed correlation matrix containing both direct and indirect effects. We formulate the problem as the inverse of network convolution, and introduce an algorithm that removes the combined effect of all indirect paths of arbitrary length in a closed-form solution by exploiting eigen-decomposition and infinite-series sums. We demonstrate the effectiveness of our approach in several network applications: distinguishing direct targets in gene expression regulatory networks; recognizing directly interacting amino-acid residues for protein structure prediction from sequence alignments; and distinguishing strong collaborations in co-authorship social networks using connectivity information alone. In addition to its theoretical impact as a foundational graph theoretic tool, our results suggest network deconvolution is widely applicable for computing direct dependencies in network science across diverse disciplines.National Institutes of Health (U.S.) (grant R01 HG004037)National Institutes of Health (U.S.) (grant HG005639)Swiss National Science Foundation (Fellowship)National Science Foundation (U.S.) (NSF CAREER Award 0644282
Recommended from our members
Validation of a social cohesion theoretical framework: a multiple group SEM strategy
Social cohesion dates back to the end of the nineteenth century. Back then, society experienced epochal transformations, as are also happening nowadays. Whenever there are epochal changes, a social order (cohesion) matter arises. The paper provides a conceptual scheme of social cohesion identifying its constituent dimensions subdivided by three spheres (macro, meso, micro) and two perspectives (objective and subjective). The overarching aim is to test the validity of the operationalization of the social cohesion model provided. Firstly, we conducted an exploratory factor analysis introducing an approach implemented in Mplus named exploratory structural equation modeling that shows several useful characteristics. Afterward, through a structural equation modeling approach, we performed several confirmatory factor analyses adopting a multiple group SEM strategy in order to cross-validate the social cohesion model
Applying behavioural theory to the challenge of sustainable development: using hairdressers as diffusers of more sustainable hair-care practices
The challenges presented by sustainable development are broadly accepted, yet resource use increases unabated. It is increasingly acknowledged that while technical solutions may play a part, a key issue is behaviour change. In response to this there has been a plethora of studies into how behaviour change can be enabled, predominantly from psychological and sociological perspectives. This has resulted in a substantial body of knowledge into the factors that drive behaviour change and how they can be manipulated to achieve desired social goals. In this paper we describe a study that draws on this body of knowledge to design an intervention to drive behaviour change across the hairdressing sector, and by the process of diffusion, across the vast social networks of this occupational group to influence domestic hair-care practices. The intervention was successful: hairdressers indicated positive intentions to adopt more sustainable practices within their salons and pass them onto their customers. The customer survey (N=776) confirms this: customers surveyed after their hairdresser attended the Green-Salon-Makeover intervention were significantly more likely to report that environmental issues had been considered in their salon visit and that they themselves would consider such issues in their hair-care practices at home than customers who were surveyed before the intervention
- …
