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Background
Many social phenomena are embedded within networks of interdependencies, i.e., social 
networks or social structures. The social structure are constructed by social ties (or 
social connections) as suggested by Granovetter. Different types of connections might 
play different roles for the function of network. For example, Granovetter argued that 
weak ties (individuals are loosely connected in the network) were the necessary condi-
tion for spreading to occur across subnetwork within a social system [1]. Burt suggested 
that structural equivalence is the factor for the adoption of new ideas [2]. In the field of 
complex networks, researchers focus both the structure and function of social networks, 
i.e., networks dynamical processes taking place on networks, such as the transmission of 
disease over human contact and rumors diffusion through internet [3].

Inspired by these researches, instead of discussing spreading or innovation adoption 
in network, the present research ask how do social networks (different social structures) 
influence opinions dynamics? i.e., the influence of social network structure on opinions 
dynamics, we will investigate under what conditions opinions in a group can reach con-
sensus and average consensus.

Here we refer to the network is the pattern of friendship, advice, communication, sup-
port or is the form of bargaining, debating and compromising. In the structured social 
context, individual determines his/her opinions, in accordance with the constraints and 
possibilities imposed by other’s in the network. In other words, individuals are assumed 
to be responsive to the contextual cues provided by the opinions and behavior of sig-
nificant others. Through advice, communication, support or bargaining, debating and 
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compromising, consecutively, actors thus establish their own behavior, by appropriately 
taking into account the opinions and behaviors displayed by their significant others.

In the end, the aggregation of local individual’s opinions adjustment contribute to the 
global group opinions patterns—polarization or consensus. In social psychology, during 
the past decades, group polarization phenomenon has been intensively studied [4–9].

The importance of group polarization is significant as it helps to explain group behav-
ior in a variety of real-life situations. Examples of these situations include public voting, 
terrorism, and violence. In our former studies, we investigated the group polarization 
based on Hopfield attractor model, and revealed a very interesting connection between 
global patterns and local structure balance [10]. Next, we will concentrate on the phe-
nomenon of group opinions convergence and consensus.

Mathematical models are used to describe consensus include DeGroot’s clas-
sic model [11], Friedkin and Johnsen [12] and Friedkin’s extended version [13]. From 
social psychological point of view, this line of research began with French’s formal the-
ory of social power [14], a simple model of collective opinion formation in a network 
of interpersonal influencing social group. As a step forward, Friedkin presented the 
social influence network theory based on Latane’s social influence theory [15], which 
considered both cognitive and structural aspects, and focused on the contributions of 
networks of interpersonal influence to the formation of interpersonal agreements and 
group consensus.

Over the past few years, models of the convergence of opinion or consensus problem 
in social systems have been the subjects of a considerable amount of recent attention in 
the fields such as motion coordination of autonomous agents [16, 17], distributed com-
putation in control theory [16, 18, 19], randomized consensus algorithms [20, 21], and 
sensor networks about data fusion problems [22–26].

Due to the unpredictability of the environment where the communication between 
agents occurs, and the random characteristics of influences or interactions among 
agents in systems (man made or social systems), most of the growing interests in con-
sensus problems (both algorithms and practical applications) are based on probabilistic 
settings [20].

Recently, the study of opinion dynamics has started to attract the attention of the con-
trol community, who with the bulk of motivation have developed about methods to 
approximate and stabilize consensus, synchronization, and other coherent states. How-
ever, comparing with many man-made or engineering systems, social systems do not 
typically exhibit a consensus of opinions, but rather a persistence of disagreement, i.e., 
polarization patterns. The ubiquitous group polarization phenomena can be observed 
from political election to carbon dioxide emissions debate [27]. In a social system, the 
difficulty in arriving at a collective consensus state roots in the fact that the process of 
opinion formation can rarely be reduced to accepting or rejecting the consensus of oth-
ers, as exemplified by Arrow’s dilemma of social choice [28]. On the contrary, in most 
cases individuals construct their options in a complex interpersonal environment or 
with their prior identities (e.g. prior beliefs, prejudices and social identities etc.), their 
views are often in a state of disagreement or not easily changed, due to opinion-depend-
ent limitations in the network connectivity and obstinacy of the agents as pointed in Ref. 
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[29]. This phenomenon shows the complexities of social control in social economic 
systems.1

Consensus as one of the important and regular group opinions dynamic pattern is 
generally observed in a relative smaller group discussion and barging process. Friedkin 
and Johnsen’s social influence network theory emphasizes that the interpersonal influ-
ence social structure (or social influence matrix) is the underling precondition for the 
group consensus or opinion convergence. In that model, the initial social influence 
structure of group of actors is assumed to be fixed during the entire process of opinion 
formation. However, with the evolution of time stamp, considering both stubborn and 
susceptible effects, the interpersonal influence structure can be regarded as a dynamic 
recursive process. For this reason, the interpersonal influence structure in their model is 
also dynamic, as described in "Problem formulation and terminology" section.

In this paper, our aim is to investigate the precondition for consensus formation in a 
social group based on Friedkin’s model. From interpersonal network structure point of 
view, our investigation presents the conditions for the formation of group opinions con-
vergence and consensus. We investigate the opinions convergence phenomenon over a 
group of N individuals with a random walk social influence structure, and for any given 
initial opinions distribution, i.e., the opinions evolution problem with a (time-variant) 
linear dynamic model driven by random matrices. Our analytic proof provides strict 
mathematic explanations for the deterministic characterization of the ergodicity, which 
can be used for studying the consensus over random graphs and the formation of opin-
ion parties. The proof procedures are self-contained and based on ergodic theorem of 
Markov chain and eigenvalues of random graph, as introduced in Ref. [30].

The rest of the paper arranged as follows. In "Problem formulation and terminology", 
we will briefly introduce social influence network theory and its mathematical frame-
work. "Random walk on weighted graph"’  section present the conditions for a group 
opinions consensus based on random walk on weighted graph. "The convergence of 
opinions profile on random graph" section prove that the convergence of group opinions 
over general weighted and undirected random graph are almost surely. "Numeric simu-
lation"  section test the theoretical conclusion by numeric simulation methods. "Conclu-
sions"  section is our concluding remarks.

Problem formulation and terminology
Social influence network theory presents a mathematical formalization of the social 
process of opinions changes that unfold in a social network of interpersonal influences. 
The spread of influence among individuals in a social network can be naturally mod-
eled under a probabilistic framework. Here, we briefly describe the classical Friedkin 
and Johnsen’s model to illustrate how the opinion dynamics arise in the context of social 
networks.

Let W = [wij] is a N × N  matrix of interpersonal influence, i.e., for each i, wij denotes 
for the individual j’s social influence to i, after normalization W satisfies 

∑
j wij = 1 . 

A = diag(a1, a2, ..., aN ) is a N × N  diagonal matrix of individuals susceptibilities to 

1  In classical sociological field, social control refers to the occurrence and effectiveness of ongoing efforts in a group to 
formulate, agree upon and implement collective courses of action.
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interpersonal influence on the opinion, and satisfies ai = 1− wii. In a group of N per-
sons, with the initial N × 1 opinions vector y(1), the updating opinions vector y(t) in the 
interpersonal opinions influence system is described by Eq. (1),

Definition 1  The system (1) reaches the convergence state if, for any initial opinions 
vector y(1), it holds that limt→∞ y(t) = y∗.

Definition 2  The system (1) reaches consensus state if, for any initial opinions vector 
y(1), and each 1 ≤ i, j ≤ N , it holds that limt→∞ |y(t)i − y

(t)
j | = 0, where |.| is the symbol 

of the absolute value. This means that, as a result of the social influence process, in the 
limit they have the same belief on the subject.

As a consequence of system (1), the opinion profile at time t ∈ Z ≥ 0 is equal to

where Ŵ t = (AW )t + (�t−1
k=0(AW )k)(I − A) is the reduced-form coefficients matrix, 

discribing the total or net interpersonal effects that transform the initial opinions into 
equilibrium opinions, and for any entry ŵt

ij in Ŵ t, satisfies 0 ≤ ŵt
ij ≤ 1, 

∑
j ŵ

t
ij = 1 . 

According to Definition 1, under suitable conditions, when t → +∞ if I − AW  is 
nonsingular, the system (1) arrives at convergence equilibrium opinions profile y∗, where 
y∗ = limt→∞ y(t) = (I − AW )−1(I − A)y(1). When t → +∞, we have

Given large enough time stamp t, and a sufficiently small positive real number ε , V 
can be approximated by Ŵ t. Furthermore, according to the approximation error 
||Ŵ t − V || ≤ ε (where ||.|| denotes the matrix norm), we can obtain the time stamp’s 
upper bound and lower bound as ln(||V || − ε)/ln(||Ŵ ||) ≤ t ≤ ln(||V || + ε)/ln(||Ŵ ||), 
where ||Ŵ || = ||AW + I − A||.

Followed the same lines of the convergence results by Ishii and Tempo [31], and Golub 
and Jackson [32], by showing the ergodicity property, Frasca et al. proved the conver-
gence result of system (1); [29]. Touri and Nedic studied the ergodicity and consensus 
problem with a linear discrete-time dynamic model driven by stochastic matrices [33].

It should be noted according to Defintion 1, that equilibrium opinions may settle on 
the mean of group members’ initial opinions, a compromise opinion that differs from 
the initial ones, or altered opinions that does not form a consensus. When consensus is 
formed in system (1), i.e., as t → +∞, Ŵ t will have the form of a stratification of indi-
vidual contributions as following,

(1)y(t+1) = AWy(t) + (I − A)y(1)

(2)y(t+1) = Ŵ ty(1),

(3)lim
t→∞

Ŵ t = lim
t→∞

{
(AW )t +

t−1∑

k=0

(AW )k(I − A)

}
= (I − AW )−1(I − A) = V .
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which suggests that the initial opinion of each individual makes a particular relative con-
tribution to the emergent consensus.

Random walk on weighted graph
In this section, without the lose of the generality of system (1), we first introduce the 
weighted adjacency random matrix, the weighted Laplacian and the transition matrix of 
the random walk, then we present the conditions for a group opinions consensus under 
the framework of social influence network model. Here we use the canonical graph sym-
bol G(V, E) in which V and E denote vertexes and edges respectively.

A weighted directed graph G is defined as w : V × V −→ R such that wij �= 0, if 
{i, j} �∈ E(G) then wij = 0. In the context, the weighted degree di of a vertex i is defined as 
di =

∑
j wij, vol(G) =

∑
i di denotes the volume of the graph G. For a general weighted 

directed graph G, the corresponding random walk is determined by transition probabili-
ties pij = Pr(xt+1 = j|xt = i) = wij/di, which are independent of i. Clearly, for each ver-
tex i satisfies 0 ≤ pij ≤ 1,

∑
i pij = 1, in other words, transition matrix P is row stochastic 

matrix. In addition if for any j ∈ V (G) satisfying 
∑

j pij = 1, then transition matrix P is 
named double stochastic matrix.

For any fixed time step t, we define transition matrix P on graph Ŵ t without normali-
zation, with entries pij = Pr(xt+1 = j|xt = i) = ŵt

ij/d̂
t
i , where d̂ti =

∑
j ŵ

t
ij, and matrix L 

as follows:

where ŵt
ij ∈ Ŵ t is defined in Equations (2) and (3). Let T denote the diagonal matrix 

with the (i, i)-th entry having value d̂ti  as following

we set T−1(i, i) = 0 for d̂ti = 0, and if d̂ti = 0 we say i is an isolated vertex. Then the graph 
Ŵ t’s Laplacian matrix ζ is defined to be the form ζ = T−1/2LT−1/2, and each entry in ζ 
is listed as following,

Obviously, ζ is real number matrix, assume its eigenvalues are all real and non-nega-
tive. Let the eigenvalues of ζ be {�i|i = 0 : N − 1} in increasing order of �i, such that 
0 = �0 ≤ �1 ≤ ... ≤ �N−1. Then transition matrix P satisfies P = T−1/2(I − ζ )T 1/2, and 
1TP = 1T , where 1 is unit vector.

(4)Lij =






�dti − �wt
ii if i = j,

−�wt
ij if i and j are adjacent,

0 otherwise.

(5)T =



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Definition 3  The random walk Pm is said to be irreducibility if for any i, j ∈ V , there 
exists some t such that pmij > 0. Definition 3 ensures the graph Pm is strongly connected.

Definition 4  The random walk Pm is aperiodic if the greatest common divisor of the 
lengths of its simple cycles is 1, i.e., gcd {m : pmii > 0} = 1 for any state i.

Definition 5  The random matrix P is said to be ergodic if there is an unique n× 1 sta-
tionary distribution vector π satisfying limm→∞ Pm(y(1))

′ = π , where ′  is the transpose 
operation.

Definition 6  The random matrix P is convergent if limm→∞ Pm(y(1))
′ exists, for any 

initial vectors beliefs y(1).

The social influence exchange among the N agents may be represented by a graph 
G(V ,Em) with the set Em of edges given by Em = {(i, j)|pmij > 0}. But this condition is not 
sufficient to guarantee consensus of dynamic system (1) as stated in Ref. [24]. This moti-
vates the following stronger version Definition 7, as addressed in Refs. [35, 36].

Definition 7  (Bounded interconnectivity times). There is some B ≥ 1 such that for 
each nodes pairs (i, j) ∈ E∞, agent j sends his/her social impact to neighbor i at least once 
at every B consecutive time slots, i.e., the graph (G(P),Em

⋃
...
⋃

E(m+B−1)) is strongly 
connected. This condition is equivalent to the requirement that there exists B ≥ 1 such 
that (i, j) ∈ Em

⋃
...
⋃

Em+B−1 for all (i, j) ∈ E∞ and m ≥ 0.

Definition 5 is the well-known result that aperiodicity is necessary and sufficient for 
convergence in the case where P is strongly connected. In other words, the necessary 
conditions for the ergodicity of P are (i) irreducibility, (ii) aperiodicity, i.e., Definition 5 is 
equivalent to Definitions 3 and 4. If Definition 5 holds, Definition 6 is satisfied.

If a Markov chain is irreducible and aperiodic, i.e., Definition 3 (or Definition 3’s 
stronger version Definition 7) and Definition 4 are both satisfied, or equivalently Defi-
nition 5 holds, then P converges to its corresponding steady distribution. This conclu-
sion is fairly easily verified by adapting theorems on steady-state distributions of Markov 
chains, such as the proof provided in Ref. [37]. From another alternative, we will prove 
this result by spectrum graph theorem in the following section.

For above Definitions 3–7, we summarize the associated results in the following Theo-
rem 1, then we emphasize on consensus result proof.

Theorem 1  If P is a random matrix, the following are equivalent:

(i)	  	 P is aperiodic and irreducible.
(ii) 	 P is ergodic.
(iii) 	P is convergent, there is a unique left eigenvector ps of P correspond-

ing to eigenvalue 1 whose entries sum to 1 such that, for every y(1), 
(limm→∞ Pm(y(1))

′
)i = π(i),where π(i) = (ps)

′
(y(1))

′ for every i.
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Both (i) and (ii) in Theorem 1 are the well-known results. Next we focus on the proof 
of (iii) based on spectral graph theory. Theorem 1 presents the conditions for the forma-
tion of opinions convergence.

The convergence of opinions profile on random graph
In this section, with the above Definitions 3, 4 or 7, we prove that the convergence of 
group opinions over general weighted and undirected random graph are almost surely. 
In addition, we prove the lower bounds on the convergence time t for random walk Pt 
to be close to its stationary distribution, given an arbitrary initial distribution and small 
positive error ǫ. We note that this proof is based on spectrum graph theorem, which is 
different with Markov chains methods, such as in [20–22, 29].

Proof In a random walk associated with a weighted connected graph G, the transi-
tion matrix P satisfies 1TP = 1T , where 1 is the vector with all elements are scalar 1. 
Therefore, the stationary distribution is exactly π = 1T/vol(G). We show that for 
any initial opinions profile distribution y(1), when m is large enough, Pmy(1) con-
verges to the stationary distribution π in the sense of L2 or Euclidean norm. We write 
y(1)T−1/2 =

∑
i aiei, where ei denotes the orthonormal eigenfunction associated with �i . 

Because e0 = 1T 1/2/
√
vol(G) and <y(1), 1 >= 1, ||.|| represents the L2 norm, we have 

a0 = <y(1)T−1/2,1T 1/2>

||1T 1/2|| = 1√
vol(G)

. We then have

where

Given any ǫ > 0, for Eq. (7) we have

then we have 
maxj

√
d̂tj

ǫminj

√
d̂tj

≤ em�
′
, so m ≥ 1

�
′ log

(
maxj

√
d̂tj

ǫminj

√
d̂tj

)
.

With the symmetry of transition probability Pm, we easily check that 
||y(1)Pm − π

′ || = ||(y(1)Pm − π
′
)
′ || = ||(y(1)Pm)

′ − π || = ||(Pm)
′
(y(1))

′ − π || =
||Pm(y(1))

′ − π ||.
With this we conclude that after m ≥ [ 1

�
′ log(

maxj

√
d̂tj

ǫminj

√
d̂tj

)] steps, the L2 distance 

between Pm(y(1))
′ and its stationary distribution π ′ is at most ǫ. Thus, Pm converges to 

a matrix with all of whose rows are equal to the positive vector π ′ = (π1,π2, ...,πN )
′ , 

(7)

||y(1)Pm − π || = ||y(1)Pm − 1T/vol(G)|| = ||y(1)Pm − a0e0T
1/2||

= ||y(1)T−1/2(I − ζ )mT 1/2 − a0e0T
1/2|| = ||

∑

i �=0

(1− �i)
maieiT

1/2||

≤ (1− �
′
)m

maxj

√
d̂tj

minj

√
d̂tj

≤ e−m�
′ maxj

√
d̂tj

minj

√
d̂tj

�
′
=

{
�1, if 1− �1 ≥ �N−1 − 1
2− �N−1, else.

(8)e−m�
′ maxj

√
d̂tj

minj

√
d̂tj

≤ ǫ,
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when a consensus is formed in Friedkin and Johnsen’s model. Accordingly, we have 
(limm→∞ y(m))i =

∑N
i=1 πiy

(1)
i  almost surely with ε approximating error corresponding 

to t updating steps.
In the herding example, there is consensus (of sorts), while which could lead to the 

wrong outcome or misunderstandings (misdirections) for the whole social group, such 
the “Mob phenomenon” of French revolution described by Gustave LeBon. In this case, 
group consensus is equivalent to the unwisdom of crowds. If group consensus to be 
emerged at certain slot m∗, such that y(m∗) = 1

N

∑N
i=1 y

(1)
j , for each j in a social group, we 

say that the society is wise, i.e., each individual arrives the group average initial opinions 
profile.

One special case of the above theorem is when P is a double random matrix. 
With this condition, the matrix has vector 1 as their common left eigenvec-
tor at all times, and, therefore, all the entries of the state vector converge to 
(1/N )(1T y(1))1 = (1/N )

∑N
j=1 y

(1)
j 1, in other words, the mean of the initial N individu-

al’s opinion profile, with probability 1. This special case is addressed in Ref. [38], we say 
this group is a wise social group, as introduced in Ref. [32].

Numeric simulation
In this section, we aim to test the theoretical conclusion by numeric simulation meth-
ods. We consider the a group (with 34 individuals) discussion processes, and assume 
that (a) each member is presented with an issue on which opinions could range from 
−10 to 10 uniformly, (b) independently form an initial opinion on the issue. We fix 
time t = 1, and generate random initial interpersonal influence matrix W, with entries 
between 0 and 7. After realization of W, we calculate maxj(d̂

t
j ) = 48, and minj(d̂

t
j ) = 3. 

Then following the same theoretical line, we construct Pt for t = 1, compute (4–6) and 
have {�i|i = 0 : N − 1}. According to inequality (7), based on {�i|i = 0 : N − 1} we have 

�
′ = 0.1101. Given ǫ = 0.01, according to (8) we have m ≥ 1

�
′ log(

maxj

√
d̂tj

ǫminj

√
d̂tj

) = 54.4184 . 

The result means that after m > 54 rounds of discussion and negotiation, the group 
reaches consensus steady state with preestablished error ǫ = 0.01. Figure 1 illustrates the 
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Fig. 1  Group opinions dynamics
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group opinions dynamic processes, we can see that after m > 50 the difference among 
members approximate to zero.

Next, we continue simulate Friedkin and Johnsen’s model (1) based on the following 
assumptions:

A1.	 Prototype group: where group numbers do not know each other, so each one put 
equal weight on other individuals;

A2.	 Group in evolution: where group numbers have already known each other, so each 
one might put unequal weight on different individuals according to his/her prior 
judgements.

Under these two assumptions, we try to find the connection between the behavior 
of agents and how long the group reaches consensus. Here, we refer to the individu-
als behaviors as individuals susceptibilities to interpersonal influence on the opinions, 
or individuals is open minded to take others opinions into account. It is obviously that 
the diagonals of matrix A represent the susceptible level (SL) as an parameter meas-
ure to describe individuals’ open minded level. Since I–A is the diagonal of W, i.e., 
SL = ai = 1− wii, i = 1, . . . ,N , where SL = 0 means that an agent only looks at his 
opinion (stubborn or egoistic behavior) and SL = 1 means that he does not look at 
his opinion at all, but takes all other opinions into account (open minded or altruistic 
behavior).

Under assumption A1, since an agent does not know all the other, that is why he 
equally takes all other opinion into account. In our simulation, we set equal influence 
weight for each individual (however with small weights if the group size is larger). Under 
A2, in order to describe each individual might exert different effects on other individu-
als, we randomly assign wij ∈ [0, 1], i �= j. Figure 2 show the connection between suscep-
tible level (SL) and how long it takes to reach consensus, within Prototype group/Group 
in evolution.

Fig. 2  Connection between SL and number of iterations
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The Fig.  2 also illustrates, under both assumption A1 and A2, if SL = 0, according 
to (1) which means that every agent sticks on his opinion, completely without taking 
care of any other opinion, infinite iterations are needed to reach consensus, means that 
no consensus will be reached. For a group of very stubborn agent (SL close to 0, but 
SL �= 0 which means that every agent sticks on his opinion taking less care of any other 
opinion), the group needs more time to reach consensus. However, carefully examine 
we observe the dominant difference between A1 and A2: (1) when SL = 0, both group 
under assumptions A1 and A2 need enough time to reach consensus, but group A2 
needs less convergence time than that of group A1. (2) for Prototype group if SL just a 
little greater than zero, then the group could rapidly toward consensus. However, for 
a group in evolution, because each individual imposes different influence weights on 
others (this means the group is heterogeneous comparing with Prototype group), with 
the continuously increasing of SL, the number of iterations needed to reach consensus 
(group consensus time) shows smoothing decaying characteristic.

Conclusions
In this study, from random walk aspects, we investigate the well-known Friedkin and 
Johnsen’s model. We define a weighted random walk P based on the social influence 
matrix. If P satisfies ergodicity, i.e., aperiodic and irreducible, Friedkin and Johnsen’s 
model converges to the stable consensus. Furthermore, we prove the lower bounds on 
the convergence time m for random walk Pm to be close to its consensus state, given an 
arbitrary initial opinions profiles and a small achieved convergence tolerance ǫ. We also 
verify the theoretical result by numeric simulation. Finally, under both Prototype group 
and Group in evolution assumptions, we simulate how long the group takes to reach a 
steady consensus state. We find that with the increasing of susceptible level (SL) both 
Prototype group and Group in evolution demonstrate opinions convergent characteris-
tics, however, Prototype group rapidly tends to consensus if susceptible level (SL) bigger 
than 0.

We hope this study succeeds in providing a rigorous framework to explain and under-
stand group consensus phenomenon. The next work will further consider influence of 
opinion leaders on population differentiation and the role of the convergence and the 
control of polarization in Internet group opinions. In addition, because the topology of 
networks could also be a key factor when opinions spreads among individuals, the net-
works model in this study may be replaced by small-world, scale free, regular networks, 
or interdependent network.

Since this paper mainly focuses on the group opinions dynamics over the networked 
social influence structure, that might ignore the case as social influence mostly follows 
either independent cascade or linear threshold model. We will combine the cascade or 
threshold effect into the social influence network model in our future study.
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