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Abstract This paper develops a discrete-time, non-linear,
and time-variant model of opinion formation in a social net-
work with global interactions to investigate the relationship
between the final consensus belief and the set of agents’
initial opinions. The model uses a novel and considerably
intuitive updating rule, according to which the weight placed
by an agent on another one’s opinion in each period decreases
continuously with the distance between their beliefs in the
previous period. In this context, the first part of our analysis
proves that agents’ beliefs converge and reach a consensus
over time (under a fairly general set of conditions). For the
two-agent case, it is then shown that the consensus belief is
the simple arithmeticmeanof the initial opinions.When there
are three agents in the network, the combined use of com-
putational and analytical methods reveals a relatively more
complex polynomial relationship between long-run and ini-
tial beliefs. In particular, our results for the three-agent case
imply that the deviation of the limiting belief from the corre-
sponding average of the initial beliefs can be expressed as a
third degree polynomial function incorporating the pairwise
differences of agents’ starting beliefs.

Keywords Social networks · Opinion dynamics · Global
interactions · Consensus

B Dionisios N. Sotiropoulos
dsotirop@aueb.gr

Christos Bilanakos
xmpilan@aueb.gr

George M. Giaglis
giaglis@aueb.gr

1 Department of Management Science and Technology, Athens
University of Economics and Business, Evelpidon 47a &
Lefkados St., 11361 Athens, Greece

Introduction

The structure of social networks has a central role in the
process of opinion formation and information transmission
among interacting agents (nodes). The network under con-
sideration might be either small (such as a committee of
scientists who exchange pieces of information to form their
beliefs about the global warming effect) or large (such as
a group of voters who discuss on the relative merits of a
politician or a group of consumers who are trying to evaluate
the quality of a new product). In all such cases, the topo-
logical properties of the underlying network critically affect
the temporal evolution of beliefs and the associated behav-
ioral patterns. Most related studies investigate the conditions
under which agents’ beliefs about the value of an underlying
parameter converge and reach a consensus over time. In this
paper, we suggest a new rule governing the process of belief
updating to build a non-linear and non-stationary model of
opinion dynamics. In this context, we use both analytical
and computational methods to examine the question of how
the limiting consensus belief varies with the initial opinion
vector.

In general, there are twomain approaches to modeling the
process of opinion formation in social networks. The first
approach assumes that individual agents are fully rational
and can process all available information in a sophisticated
manner to update their beliefs according to Bayes’ rule [1–
3]. This kind of Bayesian updating makes the problem of
drawing inferences about one’s neighbors rather complex
and quickly becomes intractable even in simple networks.
Furthermore, a series of laboratory experiments conducted
by Choi et al. [4,5] have shown that individuals’ behavioral
patterns substantially deviate from strategies that would be
followed by fully rational (Bayesian) agents. As a result, a
second widely used approach to modeling opinion dynamics

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/191594028?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-016-0029-1&domain=pdf


270 Complex Intell. Syst. (2016) 2:269–284

has built on DeGroot’s [6] seminal work which relies on the
assumption that agents are boundedly rational. According to
this formulation, individual nodes use some simple rule-of-
thumb to update their beliefs in each period as a function
of their neighbors’ beliefs in the previous period [7–9]. This
paper also lies within the framework of bounded rationality
but suggests a novel updating rule which stipulates that the
weight placed by an agent on another one’s opinion is a con-
tinuously decreasing function of the distance between their
beliefs in the previous period.

The classical DeGroot model considers a set of myopic
agents N = {1, . . . , n} that are connected in a possibly
directed and weighted network. Each agent i ∈ N starts
with an initial belief (pi (0) ∈ [0, 1]) about an underlying
state of the world. The network of interactions is captured by
a non-negative row-stochastic matrix T , such that

n∑

j=1

Ti j = 1, ∀i ∈ N . (1)

Each element Ti j of this matrix represents the weight agent i
places on j’s current opinion while forming her next-period
belief. The updating rule stipulates that each individual forms
her beliefs in each period as a weighted average (i.e., as a
linear combination) of her neighbors’ beliefs in the previous
period according to the following equation:

pi (t + 1) =
n∑

j=1

Ti j · p j (t). (2)

Since the interaction matrix remains constant over time,
this is a linear and stationary model that derives necessary
and sufficient conditions for convergence and consensus of
beliefs in the long-run. An interesting variation of the model
assumes that agents have some degree of persistence on their
initial beliefs but maintains the properties of linearity and
stationarity [10,11].

On the contrary, [12,13] extend the seminal model by
assuming that the elements of the interactionmatrix are time-
dependent. In this non-stationary (but still linear) framework,
it is shown that consensus can still be reached provided that
the weights remain sufficiently positive over time (i.e., they
do not tend to zero too fast). Of course, the most general
form of the opinion dynamics model involves a non-linear
and non-stationary updating rule obtained by assuming that
the interaction matrix depends on the opinion vector p(t)
itself in each period: T = T (p(t)). To address the questions
of convergence and consensus in this setting, one must dis-
tinguish between the cases of local and global interactions.
Local interactionmodels often rely on a particularly tractable
kind of non-linearity involving bounded confidence among
agents in the network. This means that each individual i only

considers the set of agents whose opinions differ from her
own less than a confidence level di . This subset of the overall
population constitutes i’s confidence set. The updating rule
in the bounded confidence model assumes that each node
puts equal weight on the opinion of all agents who belong to
her confidence set. Under the assumption of a uniform confi-
dence level across all agents, it can be shown that beliefs will
converge in finite time and a pattern of fragmentation will
eventually prevail [7,14–16]. Since the set of conditions for
reaching a consensus in the overall society depends on the
number of agents, the mathematical analysis becomes diffi-
cult for arbitrary network sizes and the investigation of the
bounded confidence model usually proceeds by a series of
computer simulations [16–19].

A second class of non-linear (and non-stationary) opinion
formation models considers the case of global interactions,
where each agent forms her opinion in period t + 1 by
considering (i.e., by compromising with) the opinion of
potentially all other agents in period t. in this case, each
node’s confidence set coincides with the overall popula-
tion. In fact, a model of local interactions becomes global
by sufficiently increasing the confidence level of each indi-
vidual. Under the assumption of putting equal weight on
others’ beliefs, each agent’s opinion in period t + 1 will
simply be given by the arithmeticmean of all individual opin-
ions in period t . This case is not really interesting, since it
implies that an overall consensus will already be obtained
at t = 1. For this reason, Krause [20] considers a more
general updating rule stipulating that each individual’s cur-
rent belief lies between the lowest and highest beliefs held
within the population in the previous period. The use of such
a compromising rule implies that a consensus will eventu-
ally be reached in the long-run. However, the relationship
between the limiting consensus belief and the initial opin-
ion vector can be rather complex (depending on the specific
form of the updating rule) and remains an open question for
research.

This paper remains within the context of global inter-
actions to introduce a simple and intuitive updating rule
according to which the weight placed by an agent on
another one’s opinion decreases continuously with the dis-
tance between their beliefs in the previous period. Our main
objective is to jointly show convergence and consensus by
utilizing the conceptual framework of dynamical systems as
well as to study how the consensus belief depends on the ini-
tial conditions in this context. For the case of two agents,
we analytically find that the limiting belief is the simple
arithmetic mean of the initial opinions. When there are three
agents in the network, a similar analysis of convergence and
consensus is followed by the use of both computational and
analyticalmethods to derive the implicit relationship between
the consensus belief and the vector of the initial opinions.
Therefore, our analysis implies the existence of an implicit
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functional relationship between the limiting consensus belief
and the set of agents’ initial opinions.

Our findings can be compared to the set of results reached
by Pan [21]. She also proves convergence and consensus
using an updating rule which stipulates that the weight put
by an agent on another one’s beliefs in eachperiod is inversely
related to the distance between their beliefs in the previ-
ous period. However, she adopts a rather ad hoc formulation
concerning the diagonal elements of the interaction matrix,
according to which the level of trust placed by an agent on
herself is not based on distances but only indirectly changes
over time due to a normalization term ensuring the row-
stochasticity. This formulation implies that each agent puts
zero weight on herself and equal weight on other agents in
the limit. We treat this result as a paradox in the sense that
the aforementioned limiting behavior of the social interac-
tion matrix T is not in accordance with its gradual updating
rule at any time instance t . In particular, each agent nei-
ther assigns an equal amount of relative influence to any
other agent in the network nor evaluates her own belief
as having zero relative importance (Ti j (t) �= 1

n−1 , ∀t and
Tii (t) �= 0, ∀t).

Our own treatment of the updating process modifies this
rather paradoxical result by revealing a wider spectrum of
limiting behavior for the social interactionmatrix which does
not reproduce the suspiciously simple convergence pattern
predicted by Pan. Specifically, we show that as t → ∞, the
limiting degree of influence assigned by an agent to any other
agent in a network with more than two nodes is non-uniform
and the amount of relative importance assigned on one’s own
belief is different than zero. Moreover, we show that the
actual form of the limiting consensus belief p(t) as t → ∞
depends on the initial opinion vector p(0) according to a
non-trivial, complex polynomial relationship. Therefore, the
most important diversification of ourmodel relates to the lim-
iting behavior of the social interaction matrix. However, our
approach suggests a more general opinion formation model
with a common updating rule for all (non-diagonal and diag-
onal) entries of the social interaction matrix T (t), which are
updated according to the pairwise distances of agents’ beliefs
at any given time instance t . In addition, our model does not
rely on the arbitrary definition of an initial social interaction
matrix T (0) which persists throughout the opinion updating
process. Finally, the relative degree of importance ismodeled
as a continuous decreasing function of the distance in such
a way that no particular treatment (e.g., through the use of
an arbitrary parameter d , as in Pan’s model) is necessary to
avoid a division by zero when a given pair of agents happens
to share the same belief.

The rest of this paper is organized as follows. Section 2
introduces our non-linear and time-variant opinion formation
model. Section 3 studies the two-agent network and Sect.
4 deals with the case where there are three agents in the

network. Finally, Sect. 5 concludes the paper and suggests
directions for future research.

Modeling framework

Consider a set of agents, N = {1, . . . , n}, who are connected
in a weighted and possibly directed network. Each agent i ∈
N starts with an initial belief pi (0) ∈ [0, 1] about an under-
lying state of world, so that the vector of initial beliefs for all
network agents is given by p(0) = [p1(0), . . . , pn(0)]T ∈
Mn×1. In general, agent i’s belief in period t is given by
pi (t), so that the corresponding complete vector of beliefs in
period t is denoted as p(t) = [p1(t), . . . , pn(t)]T ∈ Mn×1.
The network is captured by a non-negative row-stochastic
social interaction matrix T ∈ Mn×n . Each element Ti j of
this matrix represents the weight agent i places on j’s cur-
rent belief in forming her own next-period belief.

This paper introduces an alternative opinion updating rule
that extends the original bounded confidencemodel proposed
by Hegselmann and Krause [22]. Our primary objective lies
upon the incorporation of a time-variant functional form
for the social interaction matrix, exhibiting properties that
enforce the following directives:

– Global network interactions should be considered when a
particular agent’s belief is updated;

– Continuous, time-varying connection weights should be
utilized for each pair of interacting agents;

– Anon-uniformconfidencedistribution shouldbe employed
on the agents’ beliefs that are taken into consideration by
a particular agent when forming her next-period belief;

– Higher connection weights should be assigned on pairs of
agents whose private beliefs present lower deviation.

The original bounded confidence model rests on the simpli-
fying assumption that each individual i ∈ N pays attention
exclusively on a restricted confidence set of agents, whose
beliefs fall within a predefined distance range from her own
private belief. Specifically, this set is parameterized by a
threshold value di , as shown in Eq. 3:

Si (t; di ) = {k ∈ N : |pi (t) − pk(t)| < di }, (3)

so that the corresponding opinion updating rule becomes:

pi (t + 1) =
∑

j∈Si (t;di )

1

|Si (t; di )| · p j (t). (4)

Thus, agents are characterized by a sort of distrust against
external information that significantly deviates from their
own opinions, leading them to completely ignore these par-
ticular belief signals. The other fundamental property of this
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model relates to the fact that each agent assigns the same
weight on all agents pertaining to her confidence set, without
employing a scalable trust schema that incorporates differ-
ent levels of confidence. Therefore, the model proposed by
Hegselmann and Krause can be summarized by the func-
tional form of the time-varying social interaction matrix
given below:

Ti j (t) =
{ 1

|Si (t;di)| , if |pi (t) − p j (t)| < di ;
0, otherwise.

(5)

The model proposed in this paper is also based on the
assumption that the time-varying form of the social inter-
action matrix depends on the opinion vector itself, i.e.,
T = T(p(t)). This assumption gives rise to a non-linear and
non-stationary opinion updating rule of the form:

pi (t + 1) =
∑

j∈N
λ

(i)
j (p(t)) · p j (t), (6)

where λ
(i)
j (p(t)) denotes the time-dependent interaction

strength between agents i and j , such that

n∑

j=1

λ
(i)
j (p(t)) = 1, ∀i ∈ N , ∀t ≥ 0. (7)

Our approach constitutes a major differentiation from the
original bounded confidencemodel, sincewe consider global
interactions amongst the agents pertaining to the network.
Each agent updates her private belief by taking into con-
sideration information signals from all other agents of the
network, including her own opinion. This fact is encoded
within Eq. 6, where summation is taken over the complete
set N , implying a fully connected (and directional) topology
for the underlying network. The most important extension,
however, concerns the utilization of a non-uniform, weight-
ing scheme, determining the magnitude of the connection
strength for any given pair of interacting agents. This scheme
entails that the weighting terms λ

(i)
j (t)’s should be provided

by a continuous function of the form g(p(t)) that focuses on
the i th and j th elements of the opinion vector in period t , so
that

λ
(i)
j (t) = g(pi (t), p j (t)). (8)

Our intention is to formulate a social network interac-
tion scheme stemming from the idea that agents with similar
beliefs will exert a higher level of influence on each other.
This, in turn, signifies the incorporation of a notion of
homophily within the network, since an agent evaluates as
more credible opinions that are closer to hers. Therefore, the
analytical form of the function appearing on the right-hand

side of Eq. 8 could be given by a monotonically decreas-
ing function of the distance pi (t) − p j (t). Amongst the
admissible functions are those implementing mappings of
the following form:

g : [0, 1] × [0, 1] → [0, 1] (9)

such that

g(x, y) = φ(x − y) = φ(u) (10)

where

φ(u) = 1 − |u| (11)

or

φ(u) = 1 − u2. (12)

However, functional forms described by Eqs. 11 and 12 do
not satisfy the requirement defined byEq. 7which guarantees
the row-stochasticity of matrix T (p(t)),∀t ≥ 0. Therefore,
an extra regularization term is needed, so that the function
g(pi (t), p j (t)) will be replaced by:

g̃(p(t)) = g(pi (t), p j (t))∑n
j=1 g(pi (t), p j (t))

, (13)

thus taking into consideration the pairwise differences of
beliefs between agent i and all other agents within the net-
work. Having inmind that this paper uses the functional form
defined in Eq. 12, the resulting opinion updating rule will be
given by:

pi (t + 1) =
∑

j∈N

1 − [pi (t) − p j (t)]2
n − ∑

j∈N [pi (t) − p j (t)]2 p j (t). (14)

By taking into consideration Eq. 14, it is easy to deduce that
the non-linear and time-varying form of the social interaction
matrix employed by our model will be as follows:

Ti j (p(t)) = 1 − [pi (t) − p j (t)]2
n − ∑

j∈N\{i}[pi (t) − p j (t)]2 . (15)

It is very important to note that the normalization factor,
incorporated to sustain the row-stochasticity of the social
interaction matrix T, does not affect the monotonicity of the
weighting function that quantifies the interaction strength
between agents i and j with respect to the distance of beliefs
di j = (pi − p j )

2. Letting aside the time-dependence of
the model, we may write that the weighting term Ti j can
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be expressed as a function of di j in the following way:

Ti j (di j ) = 1 − di j
n − di j − ∑

k �=i, j dik
, i, j ∈ N , j �= i. (16)

According to Eq. 16, it is easy to deduce that

∂Ti j (di j )

∂di j
= −(n − 1) + ∑

k �=i, j dik
(
n − di j − ∑

k �=i, j dik
)2 < 0, i, j ∈ N ,

j �= i. (17)

since 0 ≤ ∑
k �=i, j dik ≤ n − 2. Therefore, Ti j is a strictly

decreasing function of di j , assigning higher confidence val-
ues on nodes whose beliefs exhibit lower deviation from the
current belief of a given node i .

The two-agent case

In this section, we are interested in the limiting behavior of
the smallest possible, non-trivial, network of agents whose
beliefs are updated according to Eq. 14. Specifically, we
focus on the stability analysis of the emerging discrete-time
non-linear dynamical system when n = 2, which provides
significant insights concerning the social networks’ ability to
convergence and reach a consensus.

Convergence and consensus analysis

The general form of the updating equations for our model,
when n = 2, takes the following form:

Fx (x, y) = λx (x) · x + λx (y) · y (18)

Fy(x, y) = λy(x) · x + λy(y) · y (19)

where x, y ∈ [0, 1] are the current node beliefs and
Fx (x, y), Fy(x, y) are the functions assigning the next-
period node beliefs. The weighting terms for each node are
given be the following set of equations:

λx (s) = g(x, s)

g(x, x) + g(x, y)
, (20)

λy(s) = g(y, s)

g(y, y) + g(y, x)
, (21)

with s ∈ {x, y} satisfying that

λx (x) + λx (y) = 1 (22)

λy(x) + λy(y) = 1. (23)

Moreover, Eqs. 18 and 19 can be rewritten in the following
form by taking into consideration Eqs. 22 and 23:

Fx (x, y) = (1 − λx (y)) · x + λx (y) · y (24)

Fy(x, y) = λy(x) · x + (1 − λy(x)) · y (25)

which yields that

Fx (x, y) = x + (y − x) · λx (y) (26)

Fy(x, y) = y + (x − y) · λy(x) (27)

By incorporating the time parameter within Eqs. 26 and 27,
they may be reexpressed in the following form:

Fx (xt , yt ) = xt + (yt − xt ) · λx (yt ) (28)

Fy(xt , yt ) = yt + (xt − yt ) · λy(xt ) (29)

such that

xt+1 = Fx (xt , yt ) (30)

yt+1 = Fy(xt , yt ) (31)

where t ∈ N
∗+. Letting

δt = xt − yt (32)

and by taking into consideration Eqs. 30 and 31, Eqs. 28 and
29 can be reformulated as:

xt+1 = xt − δt · λx (yt ) (33)

yt+1 = yt + δt · λy(xt ). (34)

Having in mind Eq. 12, it is easy to deduce that the weight-
ing terms associated with each node will be given by the
following equation:

λx (yt ) = λy(xt ) = 1 − (xt − yt )2

2 − (xt − yt )2
= 1 − δ2t

2 − δ2t
(35)

which finally yields that Eqs.33 and 34 may be rewritten as
follows:

xt+1 = xt − δt · 1 − δ2t

2 − δ2t
(36)

yt+1 = yt + δt · 1 − δ2t

2 − δ2t
. (37)

By performing pairwise substraction between Eqs.36 and 37,
we obtain that:

xt+1 − yt+1 = (xt − yt ) − 2 · δt · 1 − δ2t

2 − δ2t
(38)

which can be written in the following form:

δt+1 = δt − 2 · δt · 1 − δ2t

2 − δ2t
(39)
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finally, yielding

δt+1 = δ3t

2 − δ2t
. (40)

Equation 40 describes the time evolution of a discrete-
time non-linear dynamical system, by defining the recursive
relation that controls the sequence of differences between
the network agents’ beliefs. Exploration of such non-linear
difference equations, in the sense of determining and charac-
terizing their solutions in terms of stability, can be conducted
according to [23]. Specifically, the steady states of this
dynamical system can be obtained by setting: δt+1 = δt = δ,

which is equivalent to determining the solutions of δ
3 − δ =

0. Therefore, the set of equilibrium points for the aforemen-
tioned dynamical system will be given by �s = {δ1, δ2, δ3},
where δ1 = 0, δ2 = 1, and δ3 = −1. The stability status
for each one of the obtained solutions, δi , i ∈ [3] , can
be determined by computing the values of dh

dδ (δi ), where

h(δ) = δ3

2−δ2
and dh

dδ = δ2·(6−δ2)

(2−δ2)2
, with stable points being

those that correspond to solutions satisfying
∣∣ dh
dδ (δi )

∣∣ < 1.
Having in mind that

∣∣ dh
dδ (δ2)

∣∣ = ∣∣ dh
dδ (δ3)

∣∣ = 5 > 1 and that∣∣ dh
dδ (δ1)

∣∣ = 0 < 1, it is easy to deduce that the discrete-time
non-linear dynamical system under investigation possesses
a unique stable fixed point when δt = 0.

The previous stability analysis results might be better
understood by considering the underlying phase-space of dif-
ferences between agents’ beliefs. In this context, the most
significant facts concerning the dynamical system arising
from our model can be conceived by studying the behavior
of the following quantity:

�δt = δt+1 − δt (41)

as a function of the current difference of nodes’ beliefs δt .
Interestingly, this quantity may be interpreted as a velocity
parameter v, since v = v(δt ) = �δt

�t
= �δt

(t+1)−t = �δt ,
which finally yields:

�δt = h(δt ) − δt = 2(δ3t − δt )

2 − δ2t
, δt ∈ [−1, 1]. (42)

The graphical representation of the quantity�δt as a func-
tion of δt appears in Fig. 1. The fixed points of the dynamical
system are indicated as circles on the horizontal line, corre-
sponding to states within the considered phase-space when
the velocity equals zero (�δt = 0). In other words, such
points in the phase-space characterize states of the dynamical
system that when reached, no further evolution of the system
over time is possible. The unstable fixed points are marked as
unfilled circles at the pointswhere δt = −1or δt = +1,while
the stable one (map sink or attractor within the terminology

δt

Δδt

0 1+1-

Stable Fixed Point tnioPdexiFelbatsnUtnioPdexiFelbatsnU

Fig. 1 Stability analysis for n = 2

of dynamical systems) is depicted as a filled circle at the
point where δt = 0. Moreover, by taking into consideration
Eqs. 26 and 27, it is easy to derive that when δt∗ ∈ �s , then
xt+1 = xt , ∀t ≥ t∗ and yt+1 = yt , ∀t ≥ t∗. This implies
that once the dynamical system enters one of the identified
steady states for some time t∗ ≥ 0, the corresponding agents’
beliefs cease to evolve over time as well. Specifically, given
that xt∗ , yt∗ ∈ [0, 1], the unstable fixed points for δt∗ = −1
and δt∗ = +1 emerge exclusively from the situations where
(xt∗ , yt∗) = (0, 1) and (xt∗ , yt∗) = (1, 0). Furthermore, the
underlying nodes’ beliefs for the case where δt∗ = 0 are,
such that xt∗ = yt∗ .

The most important fact, however, concerning the stable
fixed point at δt = 0 is that all possible configurations of the
initial nodes’ beliefs will converge to that point excluding the
cases for which δ0 = −1 and δ0 = +1, as indicated by the
arrows drawn in Fig. 1 pointing towards that starting point
of the horizontal axis. This is indicative of the fact that even
slight perturbations of these initial states will lead the system
to evolve towards its unique stable fixed point, which is also
represented in Fig. 1 by the arrows pointing to the right and
to the left of the points at −1 and +1 on the horizontal axis,
respectively. Therefore, we may write that

lim
t→∞ δt = δ∞ =

⎧
⎨

⎩

−1, δ0 = −1;
0, −1 < δ0 < +1;
+1, δ0 = 1.

(43)

which is equivalent to:

lim
t→∞(xt , yt ) = (x∞, y∞)

=
⎧
⎨

⎩

(0, 1), (x0, y0) = (0, 1);
(p∗, p∗), (x0, y0) ∈ [0, 1]2\{(0, 1), (1, 0)};
(1, 0), (x0, y0) = (1, 0).

(44)
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where p∗ ∈ [0, 1]. The previous analysis shows conver-
gence in the network for the various initial configurations of
nodes’ beliefs, given that the adopted updating rule is the one
described in Eq.14. In addition, we have shown that under
certain initial conditions, nodes’ limiting beliefs lead to a
consensus. In this case, the updating rule specified in Eq. 15
immediately implies that influence weights are uniformly
distributed among all agents in the limit, that is

Ti j (p
∗) = 1

n
, ∀i, j ∈ N (45)

Limiting consensus beliefs

Having determined the initial conditions under which the
learning process leads the network to a consensus for n = 2,
we will proceed by extracting the functional relation that
associates the network agents’ starting beliefs (x0, y0) ∈
Pcons with the corresponding consensual belief p∗, where

Pcons

=
{
(x0, y0) ∈ [0, 1]2 : (x0, y0) �= (0, 1) ∧ (x0, y0) �= (1, 0)

}
.

(46)

This task may be undertaken by considering the reformu-
lation of Eqs. 36 and 37 appearing below:

xt+1 − xt = −δt · 1 − δ2t

2 − δ2t
(47)

yt+1 − yt = +δt · 1 − δ2t

2 − δ2t
(48)

which leads to the following set of equations:

δxt = −δt · 1 − δ2t

2 − δ2t
(49)

δ
y
t = +δt · 1 − δ2t

2 − δ2t
(50)

by letting

δxt = xt+1 − xt (51)

δ
y
t = yt+1 − yt . (52)

From Eqs. 49 and 50, and given that the sequence of δt ’s
converges to zero (δt → 0,∀δ0 ∈ (−1,+1)), it is easy to
derive that ∀(x0, y0) ∈ Pcons:

lim
t→∞ δxt = δx∞ = 0 < ∞ (53)

lim
t→∞ δ

y
t = δ

y∞ = 0 < ∞. (54)

Given Eqs. 51 and 52, and the existence of the above limits,
summation over time validates the following formulation for
the limiting nodes’ beliefs:

x∞ = p∗ = x0 +
∞∑

t=0

δxt (55)

y∞ = p∗ = y0 +
∞∑

t=0

δ
y
t (56)

Furthermore, by performing pairwise addition between the
pairs of Eqs. 55, 56 and 49, 50, we obtain that

2p∗ = x0 + y0 +
∞∑

t=0

(δxt + δ
y
t ) (57)

and

δxt + δ
y
t = 0, ∀t ≥ 0, (58)

respectively. Finally, the combination of Eqs. 57 and 58
yields:

p∗ = x0 + y0
2

(59)

indicating that the society’s limiting consensus belief is equal
to the arithmetic mean of the corresponding initial beliefs
given that (x0, y0) ∈ Pcons.

The three-agent case

In this section, we focus our attention on the limiting behav-
ior of a society with three agents, whose beliefs are updated
according to the proposed model defined in Eq. 14. Once
again, investigation concerning the convergence and consen-
sus of the network instance is conducted through the stability
analysis of the emergent discrete-time non-linear dynamical
system when n = 3.

Convergence and consensus analysis

The general form of the updating equations for our model,
when n = 3, takes the following form:

Fx (x, y, z) = μx (x) · x + μx (y) · y + μx (z) · z (60)

Fy(x, y, z) = μy(x) · x + μy(y) · y + μy(z) · z (61)

Fz(x, y, z) = μz(x) · x + μz(y) · y + μz(z) · z (62)

where x, y, z ∈ [0, 1] are the current node beliefs and
Fx (x, y, z), Fy(x, y, z), and Fz(x, y, z), respectively, are
the functions assigning the next-period node beliefs. The
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weighting terms for each node are given by the following
set of equations:

μx (s) = g(x, s)

g(x, x) + g(x, y) + g(x, z)
(63)

μy(s) = g(y, s)

g(y, x) + g(y, y) + g(y, z)
(64)

μz(s) = g(z, s)

g(z, x) + g(z, y) + g(z, z)
(65)

with s ∈ {x, y, z} satisfying that:

μx (x) + μx (y) + μx (z) = 1 (66)

μy(x) + μy(y) + μy(z) = 1 (67)

μz(x) + μz(y) + μz(z) = 1. (68)

Moreover, Eqs. 60, 61, and 62 can be rewritten in the fol-
lowing form by taking into consideration Eqs. 66, 67, and
68:

Fx (x, y, z) = [1 − μx (y) − μx (z)] · x + μx (y) · y + μx (z) · z
(69)

Fy(x, y, z) = μy(x) · x + [1 − μy(x) − μy(z)] · y + μy(z) · z
(70)

Fz(x, y, z) = μz(x) · x + μz(y) · y + [1 − μz(x) − μz(y)] · z
(71)

leading to the following set of equations:

Fx (x, y, z) = x + (y − x) · μx (y) + (z − x) · μx (z) (72)

Fy(x, y, z) = y + (x − y) · μy(x) + (z − y) · μy(z) (73)

Fz(x, y, z) = z + (x − z) · μz(x) + (y − z) · μz(y) (74)

By incorporating the time parameter within Eqs. 72, 73 and
74, they may be rewritten in the following form:

Fx (xt , yt , zt ) = xt + (yt − xt ) · μx (yt ) + (zt − xt ) · μx (zt )

(75)

Fy(xt , yt , zt ) = yt + (xt − yt ) · μy(xt ) + (zt − yt ) · μy(zt )

(76)

Fz(xt , yt , zt ) = zt + (xt − zt ) · μz(xt ) + (yt − zt ) · μz(yt )

(77)

such that

xt+1 = Fx (xt , yt , zt ) (78)

yt+1 = Fy(xt , yt , zt ) (79)

zt+1 = Fz(xt , yt , zt ) (80)

where t ∈ N
∗+. Letting

δxy(t) = xt − yt (81)

δxz(t) = xt − zt (82)

δyz(t) = yt − zt (83)

and by taking into consideration Eqs. 78, 79 and 80,
Eqs. 75, 76 and 77 can be reformulated as:

xt+1 = xt − δxy(t) · μx (yt ) − δxz(t) · μx (zt ) (84)

yt+1 = yt + δxy(t) · μy(xt ) − δyz(t) · μy(zt ) (85)

zt+1 = zt + δxz(t) · μz(xt ) + δyz(t) · μz(yt ). (86)

Having in mind Eqs. 63, 64 and 65, it is easy to deduce that
the time evolution of the emergent discrete-time non-linear
dynamical system will be given by the following system of
non-linear difference equations:

xt+1 = xt − δxy(t) · 1 − δ2xy(t)

3 − δ2xy(t) − δ2xz(t)

−δxz(t) · 1 − δ2xz(t)

3 − δ2xy(t) − δ2xz(t)
(87)

yt+1 = yt + δxy(t) · 1 − δ2xy(t)

3 − δ2xy(t) − δ2yz(t)

−δyz(t) · 1 − δ2yz(t)

3 − δ2xy(t) − δ2yz(t)
(88)

zt+1 = zt + δxz(t) · 1 − δ2xz(t)

3 − δ2xz(t) − δ2yz(t)

+ δyz(t) · 1 − δ2yz(t)

3 − δ2xz(t) − δ2yz(t)
. (89)

The set of Eqs. 87, 88, and 89 defines the recursive rela-
tions that control the sequences of agents’ beliefs as functions
of their corresponding pairwise differences over time. Once
again, characterizing the above system of non-linear differ-
ence equations according to the stability of its steady states
can be performed as shown in [23]. Particularly, the process
of stability analysis could be facilitated by considering that
δxy(t) = ut , δyz(t) = vt and δxz(t) = st . Eqs. 87, 88, and 89
can now be rewritten in the following form:

xt+1 = xt + fx (ut , st ) (90)

yt+1 = yt + fy(ut , vt ) (91)

zt+1 = zt + fz(vt , st ) (92)

such that

fx (ut , st ) = −ut · (1 − u2t ) − st · (1 − s2t )

3 − u2t − s2t
(93)
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fy(ut , vt ) = ut · (1 − u2t ) − vt · (1 − v2t )

3 − u2t − v2t
(94)

fz(vt , st ) = vt · (1 − v2t ) + st · (1 − s2t )

3 − v2t − s2t
. (95)

Consequently, the steady states of this dynamical system can
be obtained by setting xt+1 = xt = x , yt+1 = yt = y,
and zt+1 = zt = z, such that u = x − y, v = y − z, and
s = x − z. In this context, the aforementioned equilibrium
points correspond to the solutions of the following system of
non-linear equations:

fx (u, s) = 0 (96)

fy(u, v) = 0 (97)

fz(v, s) = 0 (98)

which is equivalent to

u · (1 − u2) + s · (1 − s2) = 0 (99)

u · (1 − u2) − v · (1 − v2) = 0 (100)

s · (1 − s2) + v · (1 − v2) = 0 (101)

arising from Eqs. 90, 91, and 92. Taking into consideration
that δxy(t) + δyz(t) = δxz(t), ∀t ∈ N

∗+, which may be
translated to ut + vt = st , ∀t ∈ N

∗+, it is easy to deduce that
the same relation holds for the equilibrium points u, v and s,
such that

u + v = s. (102)

Hence, the system of non-linear equations describing the
steady states of the dynamical system under investigation
may be reduced to

u · (1 − u2) + (u + v) · (1 − (u + v)2) = 0 (103)

v · (1 − v2) + (u + v) · (1 − (u + v)2) = 0 (104)

subject to the following constraint:

− 1 ≤ u + v ≤ +1. (105)

Performing pairwise addition between Eqs. 103 and 104
yields that

(u + v) − (u3 + v3) = −2 · (u + v) · (1 − (u + v)2)

(106)

which, in turn, may be rewritten as:

(u + v) · [1 − (u + v)2 + 3 · u · v]
= −2 · (u + v) · [1 − (u + v)2]. (107)

The solutions of Eq. 107 are those given by setting u + v =
0 or 1 − (u + v)2 + u · v = 0, when u + v �= 0, that
simultaneously satisfy the constraint defined in inequality
Eq. 105. Therefore, the final set of steady states will be given
by �s = {δ1, δ2, δ3, δ4, δ5, δ6, δ7}, where δ1 = (0, 0, 0),
δ2 = (0,+1,+1), δ3 = (+1,−1, 0), δ4 = (+1, 0,+1),
δ5 = (−1, 0,−1), δ6 = (−1,+1, 0), and δ7 = (0,−1,−1),
with each δi , i ∈ [7] being a triplet of the form (ui , vi , si ).

The stability status for each one of the obtained steady
states in�s = {(ui , vi , si ), i ∈ [7]} can be assessed by con-
sidering the equivalent two-dimensional dynamical system
of the pairwise differences between the agents’ beliefs:

ut+1 = ut + fxy(ut , vt ) (108)

vt+1 = vt + fyz(ut , vt ) (109)

which emerges by performing pairwise subtraction between
Eqs. 90, 91 and Eqs. 91, 92, yielding:

fxy(ut , vt ) = fx (ut , ut + vt ) − fy(ut , vt ) (110)

fyz(ut , vt ) = fy(ut , vt ) − fz(vt , ut + vt ) (111)

It is important to note that the reduction of the original
three-dimensional dynamical system defined by the set of
Eqs. 78, 79, and 80, to the two-dimensional one given by the
pair of Eqs. 108 and 109, is based on the fact that the recur-
rent relation which provides the value of st+1 as a function
of st is no longer required, since ut + vt = st , ∀t ∈ N

∗+.
Under these conditions, we may finally write that

ut+1 = Fu(ut , vt ) (112)

vt+1 = Fv(ut , vt ) (113)

where

Fu(ut , vt ) = ut + fxy(ut , vt ) (114)

Fv(ut , vt ) = vt + fyz(ut , vt ). (115)

In this setting, steady states (ui , vi ) are those corresponding
to eigenvalues λi of the matrix

Ai =
[

∂Fu
∂u |(ui ,vi ) ∂Fu

∂v
|(ui ,vi )

∂Fv

∂u |(ui ,vi ) ∂Fv

∂v
|(ui ,vi )

]
(116)

with magnitude smaller than 1. Table 1 presents the obtained
eigenvalues for each pair of steady states (ui , vi ), i ∈ [7],
implying that the dynamical system under investigation pos-
sesses a unique stable fixed point for (u, v) = (0, 0), which
is also an attractor in the phase-space defined by the pairwise
differences of nodes’ beliefs.More importantly, this fact indi-
cates that unless the network of agents is initiated with one
of the states within the set �̂s = �s\{δ1} , the society will
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Table 1 Stability analysis for n = 3

Steady states Eigen values

u v λ1 λ2

0 0 0 0

0 1 1 6

1 −1 6 1

1 0 1 6

−1 0 1 6

−1 1 6 1

0 −1 1 6

reach a consensus, since u = 0 and v = 0 yield that x = y
and y = z, such that x = y = z = p∗.

Hence, by performing an analysis similar to the one dis-
cussed in Sect. 3.1, it is easy to deduce that

lim
t→∞(ut , vt ) = (u∞, v∞)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0,+1), (u0, v0) = (0,+1);
(−1,+1), (u0, v0) = (−1, +1);
(−1, 0), (u0, v0) = (−1, 0);
(0, 0), (u0, v0) ∈ [−1, +1]2 : −1 < u0 + v0 < +1);
(0,−1), (u0, v0) = (0,−1);
(+1,−1), (u0, v0) = (+1, −1);
(+1, 0), (u0, v0) = (+1, 0).

(117)

which is equivalent to:

lim
t→∞(xt , yt , zt ) = (x∞, y∞, z∞)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(+1,+1, 0), (x0, y0, z0) = (+1,+1, 0);
(0,+1, 0), (x0, y0, z0) = (0,+1, 0);
(0,+1,+1), (x0, y0, z0) = (0,+1,+1);
(p∗, p∗, p∗), (x0, y0, z0) ∈ P̂cons;
(0, 0,+1), (x0, y0, z0) = (0, 0,+1);
(+1, 0,+1), (x0, y0, z0) = (+1, 0,+1);
(+1, 0, 0), (x0, y0, z0) = (+1, 0, 0).

(118)

where p∗ ∈ [0, 1] and

P̂cons = {(x0, y0, z0) ∈ [0, 1]3 : (x0, y0, z0) /∈ {(+1,+1, 0),

(0,+1, 0), (0,+1,+1), (0, 0,+1),

(+1, 0,+1), (+1, 0, 0)}}. (119)

The previous analysis shows convergence in the network for
the various initial configurations of its nodes’ beliefs, given
that the adoptedupdating rule is the onedescribed inEq.14. In
addition, we have shown that under certain initial conditions,
nodes’ limiting beliefs lead to a consensus. This, in turn, also
implies that the influence weights are uniformly distributed
among all agents in the limit according to Eq. 45.

Limiting consensus beliefs

Having specified the conditions under which the learning
procedure leads the network to a consensus for n = 3, we
will proceed by sketching the functional relation that asso-
ciates the starting nodes’ beliefs (x0, y0, z0) ∈ P̂cons with
the corresponding consensual belief p∗.

This task may be undertaken by considering the following
recombination of Eqs. 87, 88, and 89:

Qx (t) · δx (t) + Qy(t) · δy(t) + Qz(t) · δz(t) = 0, ∀t ∈ N
∗+

(120)

where:

Qx (t) = 3 − δ2xy(t) − δ2xz(t) (121)

Qy(t) = 3 − δ2xy(t) − δ2yz(t) (122)

Qz(t) = 3 − δ2xz(t) − δ2yz(t) (123)

and

δx (t) = xt+1 − xt (124)

δy(t) = yt+1 − yt (125)

δz(t) = zt+1 − zt . (126)

In particular, expressing p∗ as a function of x0, y0, z0 can
be conducted by applying the reasoning described in Sect.
3.2, given that Eq. 120 is initially expanded in the following
form:

δ2xy(t) · [δx (t) + δy(t)] + δ2yz(t) · [δy(t) + δz(t)]
+ δ2xz(t) · [δx (t) + δz(t)]

= 3 · [δx (t) + δy(t) + δz(t)], ∀t ∈ N
∗+ (127)

and by subsequently taking the infinite sum over both hand
sides of Eq. 127.

Approximate solutions for x(t), y(t), z(t)

The utilization of Eq. 127 in the context designated in the end
of the previous subsection requires the adaptation of a par-
ticular functional form for the expressions of x(t), y(t), and
z(t), that describe the time evolution of the agents’ beliefs.
To this end, we conducted a series of computational exper-
iments with different initial conditions (x0, y0, z0) ∈ P̂cons,
where we tracked the time evolution of beliefs for each agent
within the network for a range of 100 time steps, that is
t ∈ {0, . . . , 99}. Considering a wider time axis was not
required, since, in practice, the nodes’ beliefs remained con-
stant after at most the 7th time step. This, however, does not
indicate convergence in a finite number of time steps, but is
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Fig. 2 Single exponential fits for x1(t), y1(t), and z1(t)

rather a consequence of the limited representational capacity
of a computer. Moreover, the initial points (x0, y0, z0) were
sampled from the unit cube [0, 1]3 of possible initial beliefs,
so that they were exclusively lying within the set P̂cons. This
task was accomplished by sampling the [0.1, 0.9] interval
for each initial belief with a step size of 0.05. Therefore,
we considered a total number of 4913 different scenarios of
the initial conditions, forming, each time, the actual vectors
x = [x0, . . . , x99], y = [y0, . . . , y99] and z = [z0, . . . , z99]
that store the trajectory of beliefs for each agent pertaining
to the social network. By plotting the obtained trajectories as
depicted in Figs. 2 and 3, we hypothesized that the required
expressions should be strictly increasing or decreasing expo-
nential functions of time with a negative exponential factor,
so that convergence is guaranteed as t → ∞. Therefore,
the time-dependent functions of x(t), y(t), and z(t) could be
given by a single exponential function of the form:

A(t) = α1 · eλα
1 ·t + α0 (128)

or by a more complex, double exponential function of the
form:

B(t) = β1 · eλ
β
1 ·t + β2 · eλ

β
2 ·t + β0 (129)

where λ1, λ2 < 0.
To validate our hypotheses, the parameters involved in

Eqs. 128 and 129 were estimated by performing non-linear
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Fig. 3 Double exponential fits for x1(t), y1(t), and z1(t)

Table 2 Single exponential fit for x1(t), y1(t), and z1(t)

Statistical measures x1(t) y1(t) z1(t)

RMSE 0.0003916 0.0005626 0.0009010

Rsquare 0.999 0.9999 0.999

curve fitting on each of the trajectory vectors x, y, and z,
where the time parameter was utilized as the free variable.
The goodness of fit for both models and for each different
scenario of the initial conditions was measured in terms of
the root-mean-square error (RMSE) and R2 (RSQUARE).
A typical curve fitting example for the triplet of trajectories
x1, y1 and z1 appears in Figs. 2 and 3, with (x0, y0, z0) =
(0.15, 0.10, 0.55), where the associated goodness of fit and
model parameters statistics are presented in Tables 2 and 3
for the single exponential model and in Tables 4 and 5 for the
double exponential model. It is easy to deduce that despite
the fact that the double exponential fitting curve achieves a
lower RMSE and R2 equal to 1, the corresponding 95% con-
fidence intervals’ ranges (shown within parentheses) for its
internal parameters are significantly wider than their single
exponential model counterparts. Therefore, the single expo-
nential model provides a more accurate model of the data.
The same conclusion may be drawn when considering the
overall assessment of the utilized models, as measured by
the mean and variance of RMSE and R2 for the curve fitting
tasks over all triplets within the sampled space of the initial
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Table 3 Single exponential fit parameters for x1(t), y1(t), and z1(t)

Node beliefs functions x1(t) y1(t) z1(t)

α0 0.2614 (0.2609, 0.2618) 0.2614 (0.2608, 0.2620) 0.2609 (0.2599, 0.2618)

α1 −0.1114 (−0.1125,−0.1103) −0.1614 (−0.1630,−0.1599) 0.2892 (0.2867,−0.2917)

λα
1 −2.374 (−2.268,−2.479) −2.378 (−2.273,−2.483) −2.433 (−2.334,−2.533)

Table 4 Double exponential fit for x1(t), y1(t), and z1(t)

Statistical measures x1(t) y1(t) z1(t)

RMSE 0.0001734 0.0002472 0.0003845

Rsquare 1.0000 1.0000 1.0000

conditions. Specifically, Tables 6 and 8 summarize the good-
ness of fit measures for the twomodels, where once again the
double exponential models exhibits lower RMSE and higher
R2. However, taking into consideration the information con-
tained inTables 7 and 9, it is easy to see that the best candidate
model for describing the time evolution of nodes’ beliefs is
the single exponential one given by Eq. 128.

It is important to note that the functional forms given by
Eqs. 128 and 129 also cover the special case arising when
initial beliefs (x0, y0, z0) ∈ P̂cons happen to be successive
terms of an arithmetic progression. In that case, the opinion of
the nodewhose initial belief lies in themiddle of the sequence
will remain constant over time. This exceptional case can
be incorporated in Eqs. 128 and 129 by letting (α1 = 0)
and (β1 = 0, β2 = 0) for this specific node, as shown in
Figs. 4 and 5, for the triplet of trajectories x2, y2 and z2 with
(x0, y0, z0) = (0.4, 0.6, 0.8).

Refining approximate solutions for x(t), y(t), z(t)

In the light of previously discussed computational experi-
ments and taking into consideration the fact that we seek the
functional forms of x(t), y(t), z(t) when the corresponding
initial conditions x(0), y(0), z(0) = (x0, y0, z0) lie within
the set P̂cons, we can refine our hypotheses as follows:

x(t) = ax · eλx ·t + p∗ (130)

Table 6 Single exponential fit overall statistics

Node beliefs functions x(t) y(t) z(t)

RMSE mean 0.000368386 0.000368386 0.000368386

RMSE variance 0.000000495 0.000000495 0.000000495

Rsquare mean 0.9993 0.9992 0.9993

Rsquare variance 0.000005193 0.000005590 0.000003516

Table 7 Single exponential fit 95% confidence interval range statistics

Fit parameters Range mean Range variance

α0 0.037131686 0.000906785

α1 0.001504342 0.000007971

λα
1 0.000150795 0.000000080

Table 8 Double exponential fit overall statistics

Node beliefs functions x(t) y(t) z(t)

RMSE mean 0.000239287 0.000240794 0.000240050

RMSE variance 0.000000294 0.000000298 0.000000294

Rsquare mean 0.9996 0.9996 0.9996

Rsquare variance 0.00000145 0.00000156 0.00000148

y(t) = ay · eλy ·t + p∗ (131)

z(t) = az · eλz ·t + p∗ (132)

where λx , λy, λz < 0. The functional forms given by
Eqs. 130, 131, and 132 guarantee that

lim
t→∞ x(t) = p∗ (133)

lim
t→∞ y(t) = p∗ (134)

Table 5 Double exponential fit parameters for x1(t), y1(t), and z1(t)

Node beliefs functions x1(t) y1(t) z1(t)

β0 0.2611 (0.2608, 0.2615) 0.2611 (0.2606, 0.2616) 0.2614 (0.2606, 0.2622)

β1 −0.4078 (−55.23, 54.41) −1.075 (−600, 597.9) −0.3297 (−18.28, 17.62)

β2 0.2967 (−54.52, 55.11) 0.9137 (−598.1, 599.9) 0.6183 (−17.34, 18.57)

λ
β
1 −1.783 (−13.15, 9.585) −1.751 (−24.87, 21.37) −1.599 (−8.81, 5.611)

λ
β
2 −1.627 (−14.94, 11.68) −1.671 (−26.73, 23.38) −1.908 (−7.186, 3.37)
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Table 9 Double exponential fit 95% confidence interval range statistics

Fit parameters Range mean Range variance

β0 0.013 × 103 0.00007 × 109

β1 4.567 × 103 9.71979 × 109

β2 0.065 × 103 0.00079 × 109

λ
β
1 0.032 × 103 0.00183 × 109

λ
β
2 4.585 × 103 9.72008 × 109
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Fig. 4 Single exponential fits for x2(t), y2(t), and z2(t)

lim
t→∞ z(t) = p∗. (135)

Moreover, given that x(0), y(0), z(0) = (x0, y0, z0), we can
write that

αx = x0 − p∗ (136)

αy = y0 − p∗ (137)

αz = z0 − p∗. (138)

By utilizing the updated functional forms defined inEqs. 130,
131 and 132, we can also derive that:

δx (t) = αx · rx t · (rx − 1) (139)

δy(t) = αy · ry t · (ry − 1) (140)

δz(t) = αz · rz t · (rz − 1) (141)

and

δxy
2(t) = (αx · rx t − αy · ry t )2 (142)
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Fig. 5 Double exponential fits for x2(t), y2(t), and z2(t)

δyz
2(t) = (αy · ry t − αz · rz t )2 (143)

δxz
2(t) = (αx · rx t − αz · rz t )2 (144)

where rx = eλx , ry = eλy and rz = eλz , such that 0 <

rx , ry, rz < 1. Taking the infinite sum over both sides of
Eqs. 139, 140 and 141 yields that

∞∑

t=0

δx (t) =
∞∑

t=0

αx · rx t · (rx − 1) = −αx = p∗ − x0

(145)
∞∑

t=0

δy(t) =
∞∑

t=0

αy · ry t · (ry − 1) = −αy = p∗ − y0

(146)
∞∑

t=0

δz(t) =
∞∑

t=0

αz · rz t · (rz − 1) = −αz = p∗ − z0

(147)

which is really the case, since

∞∑

t=0

δx (t) = �X = x∞ − x0 (148)

∞∑

t=0

δy(t) = �Y = y∞ − y0 (149)

∞∑

t=0

δy(t) = �Z = z∞ − y0. (150)
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Approximate expressions for p∗

Having in mind the derivations presenting in Sect. 4.2.1 and
by taking the infinite sum over both hand sides of Eq. 127,
one may arrive to the following equation:

2

3
Rx · α3

x + 2

3
Ry · α3

z + 2

3
Rz · α3

z

+1

3
Rxy · α2

x · αy + 1

3
Ryx · α2

y · αx

+1

3
Ryx · α2

y · αz + 1

3
Rzy · α2

z · αy

+1

3
Rxz · α2

x · αz + 1

3
Rzx · α2

z · αx

+αx + αy + αz = 0 (151)

where

Rp = rp − 1

1 − r3p
, p ∈ {x, y, z} (152)

and

Rpq = rq − 2rp + 1

1 − r2prq
, p, q ∈ {x, y, z} : p �= q. (153)

Equation 151 implies that the quantities p∗, x0, y0, and
z0 are connected by a complex third degree polynomial
F(p∗, x0, y0, z0) in the following way:

F(p∗, x0, y0, z0) = 0 (154)

such that

F(p∗, x0, y0, z0)
=

∑

k+l+m+n=3

fk,l,m,n(p
∗)k xl0ym0 zn0 + (x0 − p∗)

+ (y0 − p∗) + (z0 − p∗) (155)

where fk,l,m,n are coefficients of the polynomial that can
be determined by expanding the original functional form.
Moreover, by letting pmean = x0+y0+z0

3 , we may also obtain
the following formulation:

p∗ − pmean = 1

3

∑

k+l+m+n=3

fk,l,m,n(p
∗)k xl0ym0 zn0 (156)

which describes the deviation of the final consensual belief
from the corresponding mean.

The quantity p∗ − pmean may also be expressed as a func-
tion of the initial nodes’ beliefs differences, u0 = x0− y0 and
v0 = y0−z0, given by the following third degree polynomial:

p∗ − pmean =
∑

0≤k+l≤3

Pklu
k
0v

l
0 (157)

where Pkl , 0 ≤ k + l ≤ 3 are the coefficients of the polyno-
mial. This time, however, the values of Pkl were determined
by running a curve fitting routine on the trajectory data gener-
atedwithin the experimentation framework described inSect.
4.2.1. The associated curve fitting task result is depicted in
Fig. 6, while the corresponding goodness of fit measures and
coefficient values are presented in Tables 10 and 11. Once
again, it is observed that the most significant coefficients Pkl
are those for which k + l = 3.

Fig. 6 Third degree
two-dimensional polynomial fit
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Table 10 Third degree
polynomial fit statistics RMSE 2.4001 × 10−5

Rsquare 0.9991

Table 11 Third degree polynomial fit parameters

Coefficients Value (95% confidence interval)

P00 −1.408 × 10−5 (−2.135 × 10−5,−6.804 × 10−6)

P10 −3.175 × 10−5 (−6.475 × 10−5, 1.252 × 10−6)

P01 3.175 × 10−5 (−1.252 × 10−5, 6.475 × 10−6)

P20 −4.451 × 10−5 (−8.273 × 10−5,−6.303 × 10−6)

P11 −0.0001117 (−0.0001686,−5.468 × 10−5)

P02 −4.451 × 10−5 (−8.273 × 10−5,−6.303 × 10−6)

P30 −0.6981 (−0.06991,−0.06970)

P21 −0.1048 (−0.1050,−0.1046)

P12 0.1048 (0.1046, 0.1050)

P03 0.6981 (0.06970, 0.06991)

Conclusions and directions for further research

This paper suggests a discrete-time, non-linear, and time-
variant model of opinion formation in a social network with
global interactions. The analysis remains within the gen-
eral context of bounded rationality but extends the previous
modeling approaches (including the classicalDeGrootmodel
and the widely applied bounded confidence model) by intro-
ducing an intuitive updating rule which assumes that the
weight placed by an agent on another one’s opinion in each
period continuously decreases with the distance between
their beliefs in the previous period. In this framework, we
first study the fundamental questions of convergence and
consensus and then we investigate the relationship between
the society’s consensus belief and the set of agents’ initial
opinions. We have proved convergence and consensus for
the two-agent case and we have analytically shown that the
consensus belief is simply the arithmetic mean of agents’
initial opinions. A similar approach has been followed to
show convergence and consensus in a network with three
agents. In this case, a series of computational experiments
has been conducted to find an approximate exponential solu-
tion for the evolution of nodes’ beliefs over time. Finally,
this approximate exponential function has been appropriately
used to derive the relationship between the limiting consen-
sus belief and the vector of the initial opinions. We close our
paper by raising a number of suggestions for future research.
First, the analytical approach for the three-agent network
might benefit from turning the opinion formation model into
a continuous-time one. This transformation would imply that
the characterization of the consensus belief requires solving
a non-linear system of differential equations and the solu-
tion process might be facilitated by the use of the Adomian

decomposition method [21]. Second, our analysis and com-
putational results should be extended to networks with more
than three agents. We have already concluded (by studying
the two-agent and three-agent cases) that the relationship
between the consensus belief and initial conditions depends
crucially on the size of the network. However, the character-
ization of this relationship for an arbitrary number of agents
still remains an open question. Third, our model might be
extended to account for local interactions by assuming afinite
confidence level for each agent in the network. In this setting,
Hegselmann and Krause [24] have shown that opinion frag-
mentation is obtained in the limit for a fairly general set of
updating rules, whereas an overall consensus is eventually
reached if there is a large enough confidence level shared
by all agents—i.e., if the confidence level exceeds a crit-
ical level or consensus brink. Here, one might study how
the consensus brink and the limiting belief depend on the
initial conditions. Since consensus might only be reached
asymptotically but not in finite time, another open question
concerns the speed at which beliefs converge to their equilib-
rium value. This is an important issue from a practical point
of view, since a slow speed of convergence would imply the
persistence of disagreement for a substantial amount of time.
Therefore, the relationship between the rate of convergence
and the topological properties of the network (such as the
degree of homophily or the overall link density) should also
be investigated. This kind of analysis has been conducted by
Golub and Jackson [25] in the context of the classical DeG-
root model but should be extended to more general updating
rules. Finally, a valuable contribution would be to study the
properties (e.g., the number and the relative size) of final clus-
ters for the case where consensus is not achieved and opinion
fragmentation is sustained in the limit. These questions are
left for future research.
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