84 research outputs found

    Zoonotic Viruses Associated with Illegally Imported Wildlife Products

    Get PDF
    The global trade in wildlife has historically contributed to the emergence and spread of infectious diseases. The United States is the world's largest importer of wildlife and wildlife products, yet minimal pathogen surveillance has precluded assessment of the health risks posed by this practice. This report details the findings of a pilot project to establish surveillance methodology for zoonotic agents in confiscated wildlife products. Initial findings from samples collected at several international airports identified parts originating from nonhuman primate (NHP) and rodent species, including baboon, chimpanzee, mangabey, guenon, green monkey, cane rat and rat. Pathogen screening identified retroviruses (simian foamy virus) and/or herpesviruses (cytomegalovirus and lymphocryptovirus) in the NHP samples. These results are the first demonstration that illegal bushmeat importation into the United States could act as a conduit for pathogen spread, and suggest that implementation of disease surveillance of the wildlife trade will help facilitate prevention of disease emergence

    Tracking the Feeding Patterns of Tsetse Flies (Glossina Genus) by Analysis of Bloodmeals Using Mitochondrial Cytochromes Genes

    Get PDF
    Tsetse flies are notoriously difficult to observe in nature, particularly when populations densities are low. It is therefore difficult to observe them on their hosts in nature; hence their vertebrate species can very often only be determined indirectly by analysis of their gut contents. This knowledge is a critical component of the information on which control tactics can be developed. The objective of this study was to determine the sources of tsetse bloodmeals, hence investigate their feeding preferences. We used mitochondrial cytochrome c oxidase 1 (COI) and cytochrome b (cytb) gene sequences for identification of tsetse fly blood meals, in order to provide a foundation for rational decisions to guide control of trypanosomiasis, and their vectors. Glossina swynnertoni were sampled from Serengeti (Tanzania) and G. pallidipes from Kenya (Nguruman and Busia), and Uganda. Sequences were used to query public databases, and the percentage identities obtained used to identify hosts. An initial assay showed that the feeds were from single sources. Hosts identified from blood fed flies collected in Serengeti ecosystem, included buffaloes (25/40), giraffes (8/40), warthogs (3/40), elephants (3/40) and one spotted hyena. In Nguruman, where G. pallidipes flies were analyzed, the feeds were from elephants (6/13) and warthogs (5/13), while buffaloes and baboons accounted for one bloodmeal each. Only cattle blood was detected in flies caught in Busia and Uganda. Out of four flies tested in Mbita Point, Suba District in western Kenya, one had fed on cattle, the other three on the Nile monitor lizard. These results demonstrate that cattle will form an integral part of a control strategy for trypanosomiasis in Busia and Uganda, while different approaches are required for Serengeti and Nguruman ecosystems, where wildlife abound and are the major component of the tsetse fly food source

    Role of the Epigenetic Regulator HP1γ in the Control of Embryonic Stem Cell Properties

    Get PDF
    The unique properties of embryonic stem cells (ESC) rely on long-lasting self-renewal and their ability to switch in all adult cell type programs. Recent advances have shown that regulations at the chromatin level sustain both ESC properties along with transcription factors. We have focused our interest on the epigenetic modulator HP1γ (Heterochromatin Protein 1, isoform γ) that binds histones H3 methylated at lysine 9 (meH3K9) and is highly plastic in its distribution and association with the transcriptional regulation of specific genes during cell fate transitions. These characteristics of HP1γ make it a good candidate to sustain the ESC flexibility required for rapid program changes during differentiation. Using RNA interference, we describe the functional role of HP1γ in mouse ESC. The analysis of HP1γ deprived cells in proliferative and in various differentiating conditions was performed combining functional assays with molecular approaches (RT-qPCR, microarray). We show that HP1γ deprivation slows down the cell cycle of ESC and decreases their resistance to differentiating conditions, rendering the cells poised to differentiate. In addition, HP1γ depletion hampers the differentiation to the endoderm as compared with the differentiation to the neurectoderm or the mesoderm. Altogether, our results reveal the role of HP1γ in ESC self-renewal and in the balance between the pluripotent and the differentiation programs

    Improving phylogeny reconstruction at the strain level using peptidome datasets

    Get PDF
    Typical bacterial strain differentiation methods are often challenged by high genetic similarity between strains. To address this problem, we introduce a novel in silico peptide fingerprinting method based on conventional wet-lab protocols that enables the identification of potential strain-specific peptides. These can be further investigated using in vitro approaches, laying a foundation for the development of biomarker detection and application-specific methods. This novel method aims at reducing large amounts of comparative peptide data to binary matrices while maintaining a high phylogenetic resolution. The underlying case study concerns the Bacillus cereus group, namely the differentiation of Bacillus thuringiensis, Bacillus anthracis and Bacillus cereus strains. Results show that trees based on cytoplasmic and extracellular peptidomes are only marginally in conflict with those based on whole proteomes, as inferred by the established Genome-BLAST Distance Phylogeny (GBDP) method. Hence, these results indicate that the two approaches can most likely be used complementarily even in other organismal groups. The obtained results confirm previous reports about the misclassification of many strains within the B. cereus group. Moreover, our method was able to separate the B. anthracis strains with high resolution, similarly to the GBDP results as benchmarked via Bayesian inference and both Maximum Likelihood and Maximum Parsimony. In addition to the presented phylogenomic applications, whole-peptide fingerprinting might also become a valuable complementary technique to digital DNA-DNA hybridization, notably for bacterial classification at the species and subspecies level in the future.This research was funded by Grant AGL2013-44039-R from the Spanish “Plan Estatal de I+D+I”, and by Grant EM2014/046 from the “Plan Galego de investigación, innovación e crecemento 2011-2015”. BS was recipient of a Ramón y Cajal postdoctoral contractfrom the Spanish Ministry of Economyand Competitiveness. This work was also partially funded by the [14VI05] Contract-Programme from the University of Vigo and the Agrupamento INBIOMED from DXPCTSUG-FEDER unha maneira de facer Europa (2012/273).The research leading to these results has also received funding from the European Union’s Seventh Framework Programme FP7/REGPOT-2012-2013.1 under grant agreement n˚ 316265, BIOCAPS. This document reflects only the authors’ views and the European Union is not liable for any use that may be made of the information contained herein. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Novel Insights into the Diversity of Catabolic Metabolism from Ten Haloarchaeal Genomes

    Get PDF
    BACKGROUND: The extremely halophilic archaea are present worldwide in saline environments and have important biotechnological applications. Ten complete genomes of haloarchaea are now available, providing an opportunity for comparative analysis. METHODOLOGY/PRINCIPAL FINDINGS: We report here the comparative analysis of five newly sequenced haloarchaeal genomes with five previously published ones. Whole genome trees based on protein sequences provide strong support for deep relationships between the ten organisms. Using a soft clustering approach, we identified 887 protein clusters present in all halophiles. Of these core clusters, 112 are not found in any other archaea and therefore constitute the haloarchaeal signature. Four of the halophiles were isolated from water, and four were isolated from soil or sediment. Although there are few habitat-specific clusters, the soil/sediment halophiles tend to have greater capacity for polysaccharide degradation, siderophore synthesis, and cell wall modification. Halorhabdus utahensis and Haloterrigena turkmenica encode over forty glycosyl hydrolases each, and may be capable of breaking down naturally occurring complex carbohydrates. H. utahensis is specialized for growth on carbohydrates and has few amino acid degradation pathways. It uses the non-oxidative pentose phosphate pathway instead of the oxidative pathway, giving it more flexibility in the metabolism of pentoses. CONCLUSIONS: These new genomes expand our understanding of haloarchaeal catabolic pathways, providing a basis for further experimental analysis, especially with regard to carbohydrate metabolism. Halophilic glycosyl hydrolases for use in biofuel production are more likely to be found in halophiles isolated from soil or sediment

    Contrasted Patterns of Selection on MHC-Linked Microsatellites in Natural Populations of the Malagasy Plague Reservoir

    Get PDF
    Plague (Yersinia pestis infection) is a highly virulent rodent disease that persists in many natural ecosystems. The black rat (Rattus rattus) is the main host involved in the plague focus of the central highlands of Madagascar. Black rat populations from this area are highly resistant to plague, whereas those from areas in which the disease is absent (low altitude zones of Madagascar) are susceptible. Various lines of evidence suggest a role for the Major Histocompatibility Complex (MHC) in plague resistance. We therefore used the MHC region as a candidate for detecting signatures of plague-mediated selection in Malagasy black rats, by comparing population genetic structures for five MHC-linked microsatellites and neutral markers in two sampling designs. We first compared four pairs of populations, each pair including one population from the plague focus and one from the disease-free zone. Plague-mediated selection was expected to result in greater genetic differentiation between the two zones than expected under neutrality and this was observed for one MHC-class I-linked locus (D20Img2). For this marker as well as for four other MHC-linked loci, a geographic pattern of genetic structure was found at local scale within the plague focus. This pattern would be expected if plague selection pressures were spatially variable. Finally, another MHC-class I-linked locus (D20Rat21) showed evidences of balancing selection, but it seems more likely that this selection would be related to unknown pathogens more widely distributed in Madagascar than plague

    Ecological divergence of Chaetopteryx rugulosa species complex (Insecta, Trichoptera) linked to climatic niche diversification

    Get PDF
    Climate is often considered to be an important, but indirect driver of speciation. Indeed, environmental factors may contribute to the formation of biodiversity, but to date this crucial relationship remains largely unexplored. Here we investigate the possible role of climate, geological factors, and biogeographical processes in the formation of a freshwater insect species group, the Chaetopteryx rugulosa species complex (Trichoptera) in the Western Balkans. We used multi-locus DNA sequence data to establish a dated phylogenetic hypothesis for the group. The comparison of the dated phylogeny with the geological history of the Western Balkans shows that lineage formation coincided with major past Earth surface and climatic events in the region. By reconstructing present-day habitat conditions (climate, bedrock geology), we show that the lineages of C. rugulosa species complex have distinct climatic but not bedrock geological niches. Without exception, all splits associated with Pliocene/Pleistocene transition led to independent, parallel split into ‘warm’ and ‘cold’ sister lineages. This indicates a non-random diversification on the C. rugulosa species complex associated with late Pliocene climate in the region. We interpreted the results as the diversification of the species complex were mainly driven by ecological diversification linked to past climate change, along with geographical isolation

    Consumers’ experiences of back pain in rural Western Australia: Access to information and services, and self-management behaviours.

    Get PDF
    Background: Coordinated, interdisciplinary services, supported by self-management underpin effective management for chronic low back pain (CLBP). However, a combination of system, provider and consumer-based barriers exist which limit the implementation of such models into practice, particularly in rural areas where unique access issues exist. In order to improve health service delivery for consumers with CLBP, policymakers and service providers require a more in depth understanding of these issues. The objective of this qualitative study was to explore barriers experienced by consumers in rural settings in Western Australia (WA) to accessing information and services and implementing effective self-management behaviours for CLBP. Methods: Fourteen consumers with a history of CLBP from three rural sites in WA participated. Maximum variation sampling was employed to ensure a range of experiences were captured. An interviewer, blinded to quantitative pain history data, conducted semi-structured telephone interviews using a standardised schedule to explore individuals’ access to information and services for CLBP, and self-management behaviours. Interviews were digitally recorded and transcribed verbatim. Inductive analysis techniques were used to derive and refine key themes. Results: Five key themes were identified that affected individuals’ experiences of managing CLBP in a rural setting, including: 1) poor access to information and services in rural settings; 2) inadequate knowledge and skills among local practitioners; 3) feelings of isolation and frustration; 4) psychological burden associated with CLBP; and 5) competing lifestyle demands hindering effective self-management for CLBP.Conclusions: Consumers in rural WA experienced difficulties in knowing where to access relevant information for CLBP and expressed frustration with the lack of service delivery options to access interdisciplinary and specialist services for CLBP. Competing lifestyle demands such as work and family commitments were cited as key barriers to adopting regular self-management practices. Consumer expectations for improved health service coordination and a workforce skilled in pain management are relevant to future service planning, particularly in the contexts of workforce capacity, community health services, and enablers to effective service delivery in primary care

    Barcoding a Quantified Food Web: Crypsis, Concepts, Ecology and Hypotheses

    Get PDF
    The efficient and effective monitoring of individuals and populations is critically dependent on correct species identification. While this point may seem obvious, identifying the majority of the more than 100 natural enemies involved in the spruce budworm (Choristoneura fumiferana – SBW) food web remains a non-trivial endeavor. Insect parasitoids play a major role in the processes governing the population dynamics of SBW throughout eastern North America. However, these species are at the leading edge of the taxonomic impediment and integrating standardized identification capacity into existing field programs would provide clear benefits. We asked to what extent DNA barcoding the SBW food web would alter our understanding of the diversity and connectence of the food web and the frequency of generalists vs. specialists in different forest habitats. We DNA barcoded over 10% of the insects collected from the SBW food web in three New Brunswick forest plots from 1983 to 1993. For 30% of these specimens, we amplified at least one additional nuclear region. When the nodes of the food web were estimated based on barcode divergences (using molecular operational taxonomic units (MOTU) or phylogenetic diversity (PD) – the food web became much more diverse and connectence was reduced. We tested one measure of food web structure (the “bird feeder effect”) and found no difference compared to the morphologically based predictions. Many, but not all, of the presumably polyphagous parasitoids now appear to be morphologically-cryptic host-specialists. To our knowledge, this project is the first to barcode a food web in which interactions have already been well-documented and described in space, time and abundance. It is poised to be a system in which field-based methods permit the identification capacity required by forestry scientists. Food web barcoding provided an effective tool for the accurate identification of all species involved in the cascading effects of future budworm outbreaks. Integrating standardized barcodes within food webs may ultimately change the face of community ecology. This will be most poignantly felt in food webs that have not yet been quantified. Here, more accurate and precise connections will be within the grasp of any researcher for the first time
    corecore