617 research outputs found

    A Stringy Mechanism for A Small Cosmological Constant

    Full text link
    Based on the probability distributions of products of random variables, we propose a simple stringy mechanism that prefers the meta-stable vacua with a small cosmological constant. We state some relevant properties of the probability distributions of functions of random variables. We then illustrate the mechanism within the flux compactification models in Type IIB string theory. As a result of the stringy dynamics, we argue that the generic probability distribution for the meta-stable vacua typically peaks with a divergent behavior at the zero value of the cosmological constant. However, its suppression in the single modulus model studied here is modest.Comment: 36 pages, 8 figure

    MultiMetEval: comparative and multi-objective analysis of genome-scale metabolic models

    Get PDF
    Comparative metabolic modelling is emerging as a novel field, supported by the development of reliable and standardized approaches for constructing genome-scale metabolic models in high throughput. New software solutions are needed to allow efficient comparative analysis of multiple models in the context of multiple cellular objectives. Here, we present the user-friendly software framework Multi-Metabolic Evaluator (MultiMetEval), built upon SurreyFBA, which allows the user to compose collections of metabolic models that together can be subjected to flux balance analysis. Additionally, MultiMetEval implements functionalities for multi-objective analysis by calculating the Pareto front between two cellular objectives. Using a previously generated dataset of 38 actinobacterial genome-scale metabolic models, we show how these approaches can lead to exciting novel insights. Firstly, after incorporating several pathways for the biosynthesis of natural products into each of these models, comparative flux balance analysis predicted that species like Streptomyces that harbour the highest diversity of secondary metabolite biosynthetic gene clusters in their genomes do not necessarily have the metabolic network topology most suitable for compound overproduction. Secondly, multi-objective analysis of biomass production and natural product biosynthesis in these actinobacteria shows that the well-studied occurrence of discrete metabolic switches during the change of cellular objectives is inherent to their metabolic network architecture. Comparative and multi-objective modelling can lead to insights that could not be obtained by normal flux balance analyses. MultiMetEval provides a powerful platform that makes these analyses straightforward for biologists. Sources and binaries of MultiMetEval are freely available from https://github.com/PiotrZakrzewski/MetEv​al/downloads

    Optimal flux spaces of genome-scale stoichiometric models are determined by a few subnetworks

    Get PDF
    The metabolism of organisms can be studied with comprehensive stoichiometric models of their metabolic networks. Flux balance analysis (FBA) calculates optimal metabolic performance of stoichiometric models. However, detailed biological interpretation of FBA is limited because, in general, a huge number of flux patterns give rise to the same optimal performance. The complete description of the resulting optimal solution spaces was thus far a computationally intractable problem. Here we present CoPE-FBA: Comprehensive Polyhedra Enumeration Flux Balance Analysis, a computational method that solves this problem. CoPE-FBA indicates that the thousands to millions of optimal flux patterns result from a combinatorial explosion of flux patterns in just a few metabolic sub-networks. The entire optimal solution space can now be compactly described in terms of the topology of these sub-networks. CoPE-FBA simplifies the biological interpretation of stoichiometric models of metabolism, and provides a profound understanding of metabolic flexibility in optimal states

    A procedure for the estimation over time of metabolic fluxes in scenarios where measurements are uncertain and/or insufficient

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An indirect approach is usually used to estimate the metabolic fluxes of an organism: couple the available measurements with known biological constraints (e.g. stoichiometry). Typically this estimation is done under a static point of view. Therefore, the fluxes so obtained are only valid while the environmental conditions and the cell state remain stable. However, estimating the evolution over time of the metabolic fluxes is valuable to investigate the dynamic behaviour of an organism and also to monitor industrial processes. Although Metabolic Flux Analysis can be successively applied with this aim, this approach has two drawbacks: i) sometimes it cannot be used because there is a lack of measurable fluxes, and ii) the uncertainty of experimental measurements cannot be considered. The Flux Balance Analysis could be used instead, but the assumption of optimal behaviour of the organism brings other difficulties.</p> <p>Results</p> <p>We propose a procedure to estimate the evolution of the metabolic fluxes that is structured as follows: 1) measure the concentrations of extracellular species and biomass, 2) convert this data to measured fluxes and 3) estimate the non-measured fluxes using the Flux Spectrum Approach, a variant of Metabolic Flux Analysis that overcomes the difficulties mentioned above without assuming optimal behaviour. We apply the procedure to a real problem taken from the literature: estimate the metabolic fluxes during a cultivation of CHO cells in batch mode. We show that it provides a reliable and rich estimation of the non-measured fluxes, thanks to considering measurements uncertainty and reversibility constraints. We also demonstrate that this procedure can estimate the non-measured fluxes even when there is a lack of measurable species. In addition, it offers a new method to deal with inconsistency.</p> <p>Conclusion</p> <p>This work introduces a procedure to estimate time-varying metabolic fluxes that copes with the insufficiency of measured species and with its intrinsic uncertainty. The procedure can be used as an off-line analysis of previously collected data, providing an insight into the dynamic behaviour of the organism. It can be also profitable to the on-line monitoring of a running process, mitigating the traditional lack of reliable on-line sensors in industrial environments.</p

    A scalable algorithm to explore the Gibbs energy landscape of genome-scale metabolic networks

    Get PDF
    The integration of various types of genomic data into predictive models of biological networks is one of the main challenges currently faced by computational biology. Constraint-based models in particular play a key role in the attempt to obtain a quantitative understanding of cellular metabolism at genome scale. In essence, their goal is to frame the metabolic capabilities of an organism based on minimal assumptions that describe the steady states of the underlying reaction network via suitable stoichiometric constraints, specifically mass balance and energy balance (i.e. thermodynamic feasibility). The implementation of these requirements to generate viable configurations of reaction fluxes and/or to test given flux profiles for thermodynamic feasibility can however prove to be computationally intensive. We propose here a fast and scalable stoichiometry-based method to explore the Gibbs energy landscape of a biochemical network at steady state. The method is applied to the problem of reconstructing the Gibbs energy landscape underlying metabolic activity in the human red blood cell, and to that of identifying and removing thermodynamically infeasible reaction cycles in the Escherichia coli metabolic network (iAF1260). In the former case, we produce consistent predictions for chemical potentials (or log-concentrations) of intracellular metabolites; in the latter, we identify a restricted set of loops (23 in total) in the periplasmic and cytoplasmic core as the origin of thermodynamic infeasibility in a large sample (10610^6) of flux configurations generated randomly and compatibly with the prior information available on reaction reversibility.Comment: 11 pages, 6 figures, 1 table; for associated supporting material see http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.100256

    Genetic Determinants of Financial Risk Taking

    Get PDF
    Individuals vary in their willingness to take financial risks. Here we show that variants of two genes that regulate dopamine and serotonin neurotransmission and have been previously linked to emotional behavior, anxiety and addiction (5-HTTLPR and DRD4) are significant determinants of risk taking in investment decisions. We find that the 5-HTTLPR s/s allele carriers take 28% less risk than those carrying the s/l or l/l alleles of the gene. DRD4 7-repeat allele carriers take 25% more risk than individuals without the 7-repeat allele. These findings contribute to the emerging literature on the genetic determinants of economic behavior

    Reduction in acute filariasis morbidity during a mass drug administration trial to eliminate lymphatic filariasis in Papua New Guinea.

    Get PDF
    Background Acute painful swelling of the extremities and scrotum are debilitating clinical manifestations of Wuchereria bancrofti infection. The ongoing global program to eliminate filariasis using mass drug administration is expected to decrease this and other forms of filarial morbidity in the future by preventing establishment of new infections as a consequence of eliminating transmission by the mosquito vector. We examined whether mass treatment with anti-filarial drugs has a more immediate health benefit by monitoring acute filariasis morbidity in Papua New Guinean communities that participated in a 5-year mass drug administration trial. Methodology/Principal Findings Weekly active surveillance for acute filariasis morbidity defined by painful swelling of the extremities, scrotum and breast was performed 1 year before and each year after 4 annual mass administrations of anti-filarial drugs (16,480 person-years of observation). Acute morbidity events lasted <3 weeks in 92% of affected individuals and primarily involved the leg (74–79% of all annual events). The incidence for all communities considered together decreased from 0.39 per person-year in the pre-treatment year to 0.31, 0.15, 0.19 and 0.20 after each of 4 annual treatments (p<0.0001). Residents of communities with high pre-treatment transmission intensities (224–742 infective bites/person/year) experienced a greater reduction in acute morbidity (0.62 episodes per person-year pre-treatment vs. 0.30 in the 4th post-treatment year) than residents of communities with moderate pre-treatment transmission intensities (24–167 infective bites/person/year; 0.28 episodes per person-year pre-treatment vs. 0.16 in the 4th post-treatment year). Conclusions Mass administration of anti-filarial drugs results in immediate health benefit by decreasing the incidence of acute attacks of leg and arm swelling in people with pre-existing infection. Reduction in acute filariasis morbidity parallels decreased transmission intensity, suggesting that continuing exposure to infective mosquitoes is involved in the pathogenesis of acute filariasis morbidity

    Emergency Portacaval Shunt Versus Rescue Portacaval Shunt in a Randomized Controlled Trial of Emergency Treatment of Acutely Bleeding Esophageal Varices in Cirrhosis—Part 3

    Get PDF
    Emergency treatment of bleeding esophageal varices in cirrhosis is of singular importance because of the high mortality rate. Emergency portacaval shunt is rarely used today because of the belief, unsubstantiated by long-term randomized trials, that it causes frequent portal-systemic encephalopathy and liver failure. Consequently, portacaval shunt has been relegated solely to salvage therapy when endoscopic and pharmacologic therapies have failed. Question: Is the regimen of endoscopic sclerotherapy with rescue portacaval shunt for failure to control bleeding varices superior to emergency portacaval shunt? A unique opportunity to answer this question was provided by a randomized controlled trial of endoscopic sclerotherapy versus emergency portacaval shunt conducted from 1988 to 2005. Unselected consecutive cirrhotic patients with acute bleeding esophageal varices were randomized to endoscopic sclerotherapy (n = 106) or emergency portacaval shunt (n = 105). Diagnostic workup was completed and treatment was initiated within 8 h. Failure of endoscopic sclerotherapy was defined by strict criteria and treated by rescue portacaval shunt (n = 50) whenever possible. Ninety-six percent of patients had more than 10 years of follow-up or until death. Comparison of emergency portacaval shunt and endoscopic sclerotherapy followed by rescue portacaval shunt showed the following differences in measurements of outcomes: (1) survival after 5 years (72% versus 22%), 10 years (46% versus 16%), and 15 years (46% versus 0%); (2) median post-shunt survival (6.18 versus 1.99 years); (3) mean requirements of packed red blood cell units (17.85 versus 27.80); (4) incidence of recurrent portal-systemic encephalopathy (15% versus 43%); (5) 5-year change in Child’s class showing improvement (59% versus 19%) or worsening (8% versus 44%); (6) mean quality of life points in which lower is better (13.89 versus 27.89); and (7) mean cost of care per year (39,200versus39,200 versus 216,700). These differences were highly significant in favor of emergency portacaval shunt (all p &lt; 0.001). Emergency portacaval shunt was strikingly superior to endoscopic sclerotherapy as well as to the combination of endoscopic sclerotherapy and rescue portacaval shunt in regard to all outcome measures, specifically bleeding control, survival, incidence of portal-systemic encephalopathy, improvement in liver function, quality of life, and cost of care. These results strongly support the use of emergency portacaval shunt as the first line of emergency treatment of bleeding esophageal varices in cirrhosis

    Farm-Level Risk Factors for Fish-Borne Zoonotic Trematode Infection in Integrated Small-Scale Fish Farms in Northern Vietnam

    Get PDF
    BACKGROUND: Northern Vietnam is an endemic region for fish-borne zoonotic trematodes (FZT), including liver and intestinal flukes. Humans acquire the FZT infection by eating raw or inadequately cooked fish. The production of FZT-free fish in aquaculture is a key component in establishing a sustainable program to prevent and control the FZT transmission to humans. Interventions in aquaculture should be based on knowledge of the main risk factors associated with FZT transmission. METHODOLOGY/PRINCIPAL FINDINGS: A longitudinal study was carried out from June 2006 to May 2007 in Nam Dinh province, Red River Delta to investigate the development and risk factors of FZT infections in freshwater cultured fish. A total of 3820 fish were sampled six times at two-month intervals from 96 fish farms. Logistic analysis with repeated measurements was used to evaluate potential risk factors based on information collected through questionnaire interviews with 61 fish farm owners. The results showed that the FZT infections significantly increased from first sampling in June to July 2006 (65%) to sixth sampling in April to May, 2007 (76%). The liver fluke, Clonorchis sinensis and different zoonotic intestinal flukes including Haplochis pumilio, H. taichui, H. yokogawai, Centrocestus formosanus and Procerovum varium were found in sampled fish. Duration of fish cultured (sampling times), mebendazole drug self-medication of household members, presence of snails in the pond, and feeding fish with green vegetation collected outside fish farms all had a significant effect on the development of FZT prevalence in the fish. CONCLUSIONS/SIGNIFICANCE: The FZT prevalence in fish increased by 11 percentage points during a one-year culture period and the risk factors for the development of infection were identified. Results also highlight that the young fish are already highly infected when stocked into the grow-out systems. This knowledge should be incorporated into control programs of FZT transmission in integrated small-scale aquaculture nursery and grow-out systems in Vietnam

    The Potent Respiratory System of Osedax mucofloris (Siboglinidae, Annelida) - A Prerequisite for the Origin of Bone-Eating Osedax?

    Get PDF
    Members of the conspicuous bone-eating genus, Osedax, are widely distributed on whale falls in the Pacific and Atlantic Oceans. These gutless annelids contain endosymbiotic heterotrophic bacteria in a branching root system embedded in the bones of vertebrates, whereas a trunk and anterior palps extend into the surrounding water. The unique life style within a bone environment is challenged by the high bacterial activity on, and within, the bone matrix possibly causing O2 depletion, and build-up of potentially toxic sulphide. We measured the O2 distribution around embedded Osedax and showed that the bone microenvironment is anoxic. Morphological studies showed that ventilation mechanisms in Osedax are restricted to the anterior palps, which are optimized for high O2 uptake by possessing a large surface area, large surface to volume ratio, and short diffusion distances. The blood vascular system comprises large vessels in the trunk, which facilitate an ample supply of oxygenated blood from the anterior crown to a highly vascularised root structure. Respirometry studies of O. mucofloris showed a high O2 consumption that exceeded the average O2 consumption of a broad line of resting annelids without endosymbionts. We regard this combination of features of the respiratory system of O. mucofloris as an adaptation to their unique nutrition strategy with roots embedded in anoxic bones and elevated O2 demand due to aerobic heterotrophic endosymbionts
    • …
    corecore