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The metabolism of organisms can be studied with comprehensive stoichiometric models of their metabolic
networks. Flux balance analysis (FBA) calculates optimal metabolic performance of stoichiometric models.
However, detailed biological interpretation of FBA is limited because, in general, a huge number of flux
patterns give rise to the same optimal performance. The complete description of the resulting optimal
solution spaces was thus far a computationally intractable problem. Here we present CoPE-FBA:
Comprehensive Polyhedra Enumeration Flux Balance Analysis, a computational method that solves this
problem. CoPE-FBA indicates that the thousands to millions of optimal flux patterns result from a
combinatorial explosion of flux patterns in just a few metabolic sub-networks. The entire optimal solution
space can now be compactly described in terms of the topology of these sub-networks. CoPE-FBA simplifies
the biological interpretation of stoichiometric models of metabolism, and provides a profound
understanding of metabolic flexibility in optimal states.

A
comprehensive view of the metabolic capacities of organisms can be obtained with genome-scale stoi-

chiometric models of their metabolic networks21,26. The development of these models has been greatly
facilitated by the availability of annotated genome sequences and semi-automated computational pipe-

lines for reconstruction13,14,21. Models currently exist for various unicellular organisms, including various patho-
gens, industrially relevant microorganisms and man21, and their number continues to grow. They typically
incorporate hundreds to thousands of reactions and metabolites.

In the last decade, a large number of computational methods have been developed for studying the systemic
properties of genome-scale metabolic networks for applications in biotechnology and medicine21,42,26. Flux bal-
ance analysis (FBA)24,8,30 is arguably the most frequently used method for analysis of stoichiometric models. FBA
predicts maximal yields of metabolic products (e.g. biomass) and the associated optimal flux distributions
of genome-scale stoichiometric models and, therefore, FBA sets bounds for metabolic engineering studies24,26.
The predictions of FBA often come close to the outcome of laboratory evolution studies15,43 and can be used to
identify metabolic constraints and objectives at the level of the entire metabolic network36. Generally, the con-
straints defined by the stoichiometric model are insufficient in number to guarantee a unique optimal flux route
through the metabolic network. A whole solution space of flux distributions is then consistent with the prediction
of the maximal yield. The set of all optimal flux distribution solutions of a FBA problem defines a so-called
polyhedron35.

In this work, we report a computational method, Comprehensive Polyhedra Enumeration Flux Balance
Analysis (CoPE-FBA), that gives directly a network-topological understanding of the solution spaces resulting
from FBA, including flux ranges (in the literature also referred to as flux spans) and flux coupling20,7, in terms of a
compact set of subnetworks that display alternative flux distributions in the optimal state calculated by FBA. The
software for the computations of CoPE-FBA is described in the Methods section.

Methods proposed in the past for the full characterization of polyhedra of metabolic networks47,19,44–46,37,40, e.g.
elementary flux modes (EFMs) and extreme pathways (ExPas), have their limitations for two reasons: excessive
running times and output (millions of flux vectors) that is too large for any sensible analytical biological
inspection. Here we present how those limitations can be overcome for FBA polyhedra, which are smaller than
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those associated with EFMs and ExPas. However, they are still con-
sidered intractable. Previous studies have obtained various partial
characterizations of FBA polyhedra. Mixedinteger linear program-
ming has been used to partially characterize the optimal flux space28.
Flux variability analysis was introduced to quantify the range of flux
values that a single reaction can take in a polyhedron20. Flux coupling
analysis allows for the identification of reaction pairs with a fixed flux
ratio or flux direction across all optimal solutions within the poly-
hedron7. Monte Carlo sampling of optimal solutions has also
been used to probe the geometric properties of a polyhedron48,27,33,6.
However, these studies do not give any insight into how the topology
of the entire metabolic network gives rise to a polyhedron of a specific
FBA problem.

CoPE-FBA of various genome-scale metabolic networks shows
that a few relatively small subnetworks (involving typically about
5–10% of all the reactions) shape the geometry of the polyhedron
of optimal FBA solutions. We tested whether our results apply to
genome-scale stoichiometric models in general. We compared eight
such models and nine different growth conditions and found in all
cases that the solution space could be understood in terms of the
topology of a few small subnetworks. The computational pipeline
that we have developed for the calculation of polyhedra of FBA
problems is described in the Methods section. We start by explaining
the compact mathematical representation of the optimal flux
space using a toy metabolic network. Subsequently, we present
the results we obtained by applying CoPE-FBA to real-life genome
scale metabolic networks. The main body of the paper ends with a

discussion. The paper is completed by a section on methodology with
information on the design and implementation of the associated
computational pipeline.

Results
Network topological interpretation of optimal solution spaces.
Any FBA polyhedron can be described in two ways. One by linear
equalities and inequalities, which is given by the specification of the
FBA problem as a linear program (see Methods). The other, which is
more relevant for biological investigations, involves the geometric
description of a polyhedron in terms of its extremities35, which are
expressed as flux vectors19,44–46,37,40. All these flux vectors have a
topological interpretation in terms of cycles and paths in metabolic
networks. However, existing methodologies have so far been
incapable of determining these polyhedral properties of genome-
scale stoichiometric models, even when restricted to optimal FBA
spaces.

We start with analyzing a toy metabolic network (figure 1A) to
introduce the mathematical description of optimal solution spaces
(polyhedra) that arise in FBA. The network consists of 26 reactions
and contains reversible as well as irreversible reactions. To facilitate
the exposition we assume that each reaction, apart from R25, trans-
forms one molecule of substrate into one molecule of product. We
consider the network at steady state, i.e. for every intermediate meta-
bolite the net production and synthesis rates balance. The FBA
objective will be to maximize flux through reaction R26 under a
restriction on the network input flux, i.e. R1 5 1. Formulating this

Figure 1 | Topological characterization of the optimal solution space of an artificial metabolic network in terms of vertices, rays, and linealities.
A. A metabolic network with 23 metabolites and 26 reactions. The source and sink metabolites, X, Y, T and U, are underlined to indicate that their

concentrations are considered fixed in order to ensure a steady state, which we assume to be stable. Reversible reactions are depicted by two-way arrows,

irreversible reactions by one-way arrows. A reaction carries a positive flux when running from lower alphabetic to higher alphabetic order (e.g for R19 and

R21 production of O and L correspond to positive fluxes). FBA was applied to maximize the flux through reaction R26 under the constraint that the flux of

reaction R1 is smaller than or equal to 1. B. Overview of the linealities (green subnetworks) and the single ray (blue) that exist for this FBA program. The

linealities correspond to reversible cycles whereas rays resemble irreversible cycles. These cycles are elementally balanced, such that no net conversions

take place. Irreversible cycles (rays) are thermodynamically infeasible. The reactions in these cycles that are dashed in the figure show a choice of reactions

included in vertices. C. The four vertices of this FBA solution space are displayed. They each represent a route from source to sink metabolites that have the

same maximal yield. Reaction R25 is not used among the optimal vertices because it would give rise a lower yield than any of the other vertices. Any

optimal flux distributions can be reconstructed from the vertex, rays, and linealities.
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problem as a linear programming (LP) problem and solving by any
LP-solver (or in this case by inspection of figure 1A) it can be verified
that the solution value to this FBA program is a maximal flux of
reaction R26 equal to 1. For additional introductory expositions of
flux balance analysis we refer the reader to three papers24,8,30.

Clearly any route in the toy network from X to Y that avoids R25
corresponds to an optimal flux vector. Each route has value 1 for each
of the reactions on the route and 0 otherwise. Inspection of the
network indicates that multiple such routes exist. One such a route
is composed out of the reactions, {R1, R2, R5, R6, R7, R8, R12, R13,
R14, R15, R22, R23, R26}. Let us denote the corresponding flux vector
by f1. Another one is obtained by replacing reactions R6, R7, and R8
by reactions R9, R10, and R11. Let f2 be the corresponding flux
vector. Any convex combination of these two fluxes, i.e., for any
positive l , 1, sending a flux of l over the first route and 1 2 l over
the second, constitutes an optimal flux vector f 5 lf1 1 (1 2 l)f2. In
addition, various cycles exist in the network that, when run at dif-
ferent rates, do not influence the yield of Y on X. For instance,
reaction R2, R3 and R4 can run at any rate as long as metabolites
A, B and C are at steady state and this will not enhance nor reduce the
yield of Y on X. This analysis indicates that alternative optimal flux
distributions exist in the network and that each of those agrees with
the FBA optimum.

These alternative optimal flux distributions are each related to
three topological features of the solution space: vertices, rays, and
linealities. Vertices represent paths in the metabolic network (fig-
ure 1) and they correspond to corner points of (a suitably chosen
projection) of the polyhedron describing the solution space. A ray is
generally an irreversible cycle in the network (figure 1). In linear
algebraic terms, a ray is a direction (flux vector) v such that given
any point v9 in the polyhedron the point v9 1 uv is also in the
polyhedron, for all values of u $ 0. These directions together form
a cone. Linealities are reversible cycles in the network (figure 1). In
linear algebraic terms, they are defined as directions (flux vectors) v
such that given any point v9 in the polyhedron the point v9 1 mv is
also in the polyhedron, for all values of m. The latter directions
together span a linear subspace, the lineality space, which can be
fully characterized by a relatively small number of basis vectors,
which we call linealities in this paper. We emphasize that the rays
and the linealities do not belong to the optimal solution space them-
selves; they do not contribute to optimization of the metabolic
objective. They merely give directions in which the solution space
is unbounded. Every flux vector in the optimal FBA polyhedron can
be expressed in terms of these three sets of vectors. For a precise
mathematical explanation of these concepts we refer to the
Supplementary Information. In figure 1B,C we display the vertices,
rays, and linealities for the toy network.

Rays and linealities correspond to, respectively, irreversible and
reversible cycles, in which no net conversion takes place, see
Figure 1B. For instance, the conversion by the lineality composed
of R2, R3, and R4 involves no net conversion, only the recycling of B.
The same holds for the single ray solution and the other linealities.
We notice that rays correspond to thermodynamically infeasible
loops (see Discussion). Four vertices exist for this FBA problem
(Figure 1C). They differ in the routes taken through the reactions
R6 to R11 and R13 to R18. They each give rise to the maximal yield of
1 unit of Y per 1 unit of X. For incompletely defined networks, rays
and linealities can in principle also occur as paths rather than cycles.

Several computational pipelines have been proposed to compute
these extremities of polyhedra. We refer especially to Polco41 deve-
loped for determining EFMs in metabolic networks. The size of the
problems usually prevents these methods to find a complete enu-
meration of the extremities. We emphasize here two aspects of our
method that allows us to overcome these problems. Firstly, we cor-
rect the common practice in FBA to model fluxes without bounds by
bounds with artificially high numbers. Such bounds are entirely

superfluous and cause the disappearance of the rays and the line-
alities at the expense of an explosion of the number of vertices.
Secondly, we perform a preprocessing step. We noticed that in
optimal FBA solution space, usually many fluxes have a fixed value
throughout the space. We detect these fixed fluxes first by flux vari-
ability analysis. Fixing them at these values reduces the search space
so much that e.g. Polco can be used for enumeration. Moreover,
fixing these fluxes shows that the variability in the optimal solution
space is captured by relatively small subnetworks constituted by
reactions with variable fluxes. We find these subnetworks by per-
forming a correlation analysis on the vertices found. This allows for a
compact and insightful description of the optimal solution space in
terms of subnetworks that can be studied independently by visual
inspection. We illustrate this at the hand of the toy model. All details
of the method are described in the Methods section.

In the toy model flux variability analysis finds that in every optimal
solution R5, R12 and R22 have value 1. After fixing these fluxes, we
can now see that the number of vertices of a FBA problem arises
through a combinatorial phenomenon. The 22 vertices, correspond-
ing to 22 paths from R1 to R26, that are obtained by firstly choosing
between {R6, R7, R8} and {R9, R10, R11} (which together form the
first subnetwork) and then choosing between {R13, R14, R15} and
{R16, R17, R18}, which form the second subnetwork. Notice that
because R23 and R24 together form a cycle (corresponding to a
ray) they are not regarded as a third subnetwork. In each vertex we
must choose the flux in R23 equal to 1 and in R24 to 0. The same flux
vectors with flux 0 on R23 and 1 on R24 is not another vertex: it can
be expressed as a convex combination of two other solutions: 1/2
times the vector with flux in R23 equal to 1 and in R24 to 0 plus 1/2
times the vector with flux in R23 equal to 21 and in R24 to 2.

Flux path variability in such subnetworks is the crux of the com-
binatorial explosion of vertices, which we will report in the next
sections for genome-scale models. This combinatorial explosion
can arise because subnetworks may exist in metabolism with alterna-
tive internal flux distributions that can be independently chosen
without compromising the optimality requirement. These subnet-
works have a fixed net input-output stoichiometry, i.e. D R I and J R
Q in Figure 1, regardless of their internal flux distribution. If there
were k such subnetworks each having 2 alternative routes, then there
would have been (at least) 2k vertices, emphasizing that the total
number of vertices can in general be much larger than the number
of reactions in the system.

CoPE-FBA for Escherichia coli on glucose. Using CoPE-FBA, we
characterized the optimal solution space for an FBA program where
a genome-scale model of Escherichia coli version iJR90429 was
optimized for growth in mineral medium on glucose. The uptake
glucose flux was set such that a maximal growth rate of 1 was ob-
tained. Through subsequent enumeration we found 17280 vertices, 8
rays and 1 lineality (i.e. the lineality space has dimension 1). Across all
vertices, out of the 1066 reactions in the model: 733 carried no flux,
274 had a single value and 59 were variable. Thus, 59 variable reactions
gave rise to the 17280 vertex solutions; below we explain how. The
software pipeline for CoPE-FBA and the scripts for obtaining the
results described in this section can be found in the Methods section.

Of these 59 variable reactions, 44 reactions had 2 different flux
values, 3 reactions had 16 values, 2 reactions had 4 values, and 10
reactions had 3 values across all 17280 vertices. The identity and
ranges of all variable reactions were independently verified using flux
variability analysis. We found a total of 79 fluxes variable in the flux
variability analysis: as already mentioned above, 59 of them are vari-
able across all vertices, 19 are variable and occur in reactions making
up the rays, and 3 reactions occur in the lineality space. Out of those
lineality space reactions, 2 also occurred as variable fluxes across the
vertices (figure 2C).

www.nature.com/scientificreports
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To determine the origin of the 17280 vertices in terms of the
metabolic network topology we determined the Pearson correlation
coefficients between the 59 variable reactions across all vertex solu-
tions (figure 2A). The resulting 59 3 59 correlation matrix could be
block diagonalized into five blocks, indicating that the fluxes of those
5 sets of reactions vary independently across all vertices. The sets
contain 29, 18, 5, 4, and 3 reactions (59 in total). Each of these sets
contain reactions that together form a (connected) metabolic subnet-
work (figure 2B). For each subnetwork, we determined the number of
different flux distributions that specify the vertices. The subnetwork
with 29 reactions had 24 such different flux distributions, the set with
18 reactions had 90 and the other three sets each had 2 such flux
distributions. Multiplying these numbers yields 17280, the number
of vertices. In other words, the 17280 vertices are derived from five
subnetworks that each can independently be described by a relatively
small number of flux distributions within the FBA optimum (see
Supplementary Information for details of the various subnetworks).

Each subnetwork is linked to the core 274 reactions that are fixed
in the optimum network state, i.e. across all vertices. This suggests

that the overall stoichiometry of the subnetworks should be fixed
across all vertices. This is indeed the case, as we verified computa-
tionally. Thus, the subnetworks can achieve the same net reaction
stoichiometry using different internal flux distributions while the
entire flux distribution obeys the same optimal yield. The overall
stoichiometries of the five subnetworks can be found in the
Supplementary Information. For Escherichia coli iJR904 we found
eight rays and a single lineality which matched irreversible and
reversible cycles.

Comparison of the optimal solution space topologies across growth
conditions and species. In order to address how different nutrients
influence the geometry of the optimal solution space, we compared
the polyhedra of Escherichia coli iJR904 growing on nine different
carbon sources in mineral medium using CoPE-FBA. The number of
vertices across these nine cases differ by a factor of about two and the
number of subnetworks is always very small. This indicates that the
polyhedron can be understood in terms of a small number of
subnetworks each involving at most several tens of reactions. As

Figure 2 | Topological characterization of the optimal solution space with CoPE-FBA of Escherichia coli iJR904 growing on mineral medium
supplemented with glucose as carbon source. A. The flux variability analysis of the 59 reactions that display variable fluxes across all the vertices. The

color coding refers to the five different subnetworks. The symmetric matrix with Pearson correlation coefficients is always displayed and indicates the five

subnetworks that vary independently in flux value across all 17280 vertices. B. Depiction of the network topology of the five subnetworks. List_1, list_2,

list_3 and list_4 denote the following ordered lists of reactants respectively: {DGMP, GMP, GSN, AMP, DAMP, UDP, DGDP, DUDP, DADP, UMP,

DUMP, DUMP, GDP, ADN}, {DGDP, GDP, GMP1H,ADP, DADP, UTP, DGTP, DUTP, DATP, UDP, DUDP, GTP, AMP1H}, {ADP, GDP, UDP,

GTP, UTP, ATP}, {DADP, DGDP, DUDP, DGTP, DUTP, DATP}. Subnetwork 1 is composed out of 3 reactions and has 2 different flux distributions

across all vertices. Subnetwork 2 contains 9 reactions and has 24 different flux distributions across all vertices. Subnetwork 3 contains 18 reactions and

achieves 90 different flux distributions across all vertices. Subnetwork 4 contains 5 reactions and carries 2 different flux distributions. Subnetwork 5 carries

4 reactions and 2 different flux distributions across all vertices. Since all the flux distributions of the subnetwork occur independently the total number of

vertices equals 2 3 24 3 90 3 2 3 2 5 17280. C. Two piecharts indicating the numbers of variable fluxes among the vertices, the rays, and the linealities.

www.nature.com/scientificreports
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expected, the rays and linealities appeared to be independent of the
growth medium.

To test how different network topologies affect the number
and size of metabolic subnetworks we repeated our analysis on a
number of genome scale reconstructions representing different
micro-organisms. Table 1 shows that network size is not the only
determinant of the number of vertices of a polyhedron. For instance,
Mycobacterium tuberculosis has only half the number of reactions of
Escherichia coli iAF1260 and nearly an equal number of vertices.
Comparison of the number of vertices of the two Escherichia coli
metabolic network reconstructions, iJR904 and iAF1260, does indi-
cate an effect of network size on the number of vertices. The number
of subnetworks remained the same. In the Supplementary
Information we report the subnetworks of iAF1260 and one of them
involves a large segment of central metabolism. The increase in the
number of vertices for growth on threonine (over 4000 fold) indi-
cates that iAF1260 has greater flexibility in amino acid metabolism.

In Table 1, we present the polyhedral characterization of eight
different microorganisms and find that a small fraction of the total
number of reactions end up in the subnetworks that determine the
number of vertices, i.e. the major topological feature of the polyhed-
ron. Across all organisms, the number of subnetworks is always very
small indicating that the optimal solution space (the polyhedron) can
be quickly assessed by studying the individual subnetworks. By doing
so this can greatly simplify the results of a FBA and can give direct
insight into properties such as flux variability and coupling.

Discussion
Genome-scale stoichiometric models of metabolic networks allow
for a comprehensive view of the metabolic capabilities of an organ-
ism. FBA is an indispensable tool for such studies. In this work, we
presented Comprehensive Polyhedra Enumeration Flux Balance
Analysis (CoPE-FBA), an approach to fully characterize the optimal
solution space of genome-scale stoichiometric models (a polyhed-
ron) corresponding to FBA. Using our methodology, the outcome of
FBA can be quickly assessed in its entirety in terms of a few metabolic
subnetworks, even though the models consist of thousands of meta-
bolic reactions and reactants.

Through the development of our enumeration pipeline (CoPE-
FBA) we developed several techniques to make the step from deter-
mining a single FBA optimum to the enumeration of all optima

tractable at genome-scale. This entailed careful pre-processing of
the genome-scale stoichiometric models. Redundant reactions, pairs
of reactions with matching stoichiometry but that differed only in
reversibility, were scanned for and in all cases the irreversible reac-
tion was deleted. Explicitly-encoded infinity constraints i.e. bounds
on reactions represented by a large number and reactions that carry a
fixed flux at optimality (as determined by rational-arithmetic FVA)
were removed. The technical details of these engineering techniques
are discussed in the Supplementary Information.

We emphasize that enumerating all the elementary flux modes40,37

or the extreme pathways of a metabolic network5,34,49, is a computa-
tionally much more demanding task than determining all the rays
and vertices of the FBA polyhedron. The reason is that there are in
general a lot less of the latter than of the former; the vertices only
consider reaction paths through the network that give rise to the
maximization of an objective.

Rays and linealities of a polyhedron generally represent irrevers-
ible and reversible cycles that catalyze no net conversions; hence, they
only achieve the recycling of components. From a thermodynamic
point of view, this means that they are not driven by any Gibbs free
energy potential at steady state. As a consequence, linealities repres-
ent subnetworks that are only thermodynamically feasible at steady
states if all their reactions carry zero flux, i.e. they operate in ther-
modynamic equilibrium. Rays are thermodynamic inconsistencies in
the network. For instance, consider the ray network composed out of
the following reactions: A « B, B « C and A R C. Clearly, the third
reaction should be reversible as the first two reactions together form a
reversible path. All the rays we found for the genome-scale stoichi-
ometric models were of this kind. If rays exist then the model con-
tains thermodynamical inconsistencies. CoPE-FBA therefore detects
such inconsistencies and can be used as a tool to improve the descrip-
tion of metabolic networks (cf.31,18). For instance, networks with
many rays (such as Lactoccocus bulgaricus, Table 1) suffer from a
significant number of thermodynamic inconsistencies. Even though
mass-conserving reversible cycles (linealities) are not thermodyna-
mically infeasible, a great number of them in a metabolic network
does warrant further investigation into their physiological role (e.g.
M. tuberculosis and L. lactis in table 1).

From a biological perspective, CoPE-FBA greatly simplifies the
communication of FBA simulation results to the experimental bio-
logist as it can be done completely in terms of network structures

Table 1 | Overview of optimal solution space characterizations with CoPE-FBA for eight different genome-scale metabolic network mod-
els11,39,12,16,25,29 for growth on various carbon sources. The calculations in this table were obtained from our CoPE-FBA method described in
the Supplementary Information. Unpublished L. lactis, S. thermophilus, L. bulgaricus reconstructions were provided by Prof. B. Teusink (VU
University, Amsterdam)

reactions C-source vertices rays
lin. sp.

columns modules
reactions in

modules
zero
fluxes

fixed nonzero
fluxes

variable
fluxes

M. barkeri 688 methanol 512 5 5 7 34 294 338 56
E. coli iJR904 1066 glucose 17280 8 1 5 59 716 271 79
E. coli iJR904 1066 threonine 1152 8 1 7 34 728 283 55
E. coli iJR904 1066 arginine 2304 8 1 7 39 750 277 59
E. coli iJR904 1066 citrate 1920 8 1 8 42 749 275 62
E. coli iJR904 1066 fumarate 640 8 1 8 37 752 277 57
E. coli iJR904 1066 glutamine 1920 8 1 7 40 750 276 60
E. coli iJR904 1066 lactose 17280 8 1 5 59 728 279 79
E. coli iJR904 1066 malate 320 8 1 7 34 753 279 54
E. coli iJR904 1066 tryptophane 1728 8 1 4 48 743 275 68
M. tuberculosis 1020 glycerol 1327104 7 11 12 96 542 347 131
L. bulgaricus 474 lactose 2240 35 1 1 122 160 179 135
L. lactis 735 glucose 192 1 11 7 33 354 337 53
S. thermophilus 555 lactose 96 2 1 5 50 239 259 57
S. PC6803 331 glycerol 384 4 2 4 32 123 162 46
E. coli iAF1260 2374 glucose 1679616 25 1 4 118 1900 324 150
E. coli iAF1260 2374 threonine 5038848 25 1 7 76 1899 364 111

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 2 : 580 | DOI: 10.1038/srep00580 5



(figure 2). One can envision a depiction of the metabolic network
with different colors for fixed fluxes, vertex subnetworks, rays, and
linealities. An overlay of experimental flux data would then greatly
simplify the assessment of the predictive power of a genome-scale
model. In addition, subnetworks communicate other useful informa-
tion to experimental biologists. E. coli physiologists would immedi-
ately observe that subnetwork 3 (figure 2B) involves the respiratory
chain of E. coli and that the flux variability partially derives from the
usage of alternative electron carriers, i.e. ubiquinone-8, menaqui-
none-8, and demethylmenaquinone-8. But the levels of these qui-
nones are dependent on the oxygen availability4 and this knowledge
further reduces the solution space when the aerobicity of the envir-
onment is specified. In addition, consideration of secondary objec-
tives to reduce the optimal solution space (e.g. minimal pathway
length or protein costs38,3) is greatly simplified by CoPE-FBA; reduc-
tion of the solution space will only concern reactions in the subnet-
works (only 10 s of reactions; table 1). Another advantage of
CoPE-FBA is that it gives a network topological explanation of flux
coupling, flux correlation and flux variability analysis. Only fluxes
within the same subnetwork will correlate or be coupled in the
optimal solution space (cf. Supplementary Information).

Methods
The stoichiometry of a metabolic network with m metabolites and r reactions is
described by a m 3 r stoichiometry matrix N. The (i, j)-th entry of N, nij, is the
stoichiometric coefficient of the i-th metabolite in the j-th reaction, which denotes the
amount of metabolite i consumed (nij , 0) or produced (nij . 0) per unit reaction
rate. Any reaction rate (flux) vector v vector that satisfies

Nv~0 ð1Þ

contains reaction fluxes such that the system is in steady state. Typically, v 5 0 is not
the only steady state flux vector. In Flux Balance Analysis (FBA) some objective is
optimised over the steady state flux vectors24.

In FBA, the steady-state conditions (eq. 1) are augmented with capacity bounds on
reaction fluxes. In addition, a linear objective is postulated, by which we obtain a
linear programming problem. A typical FBA linear program has the form:

maximize f vð Þ~cv

subject to Nv~0

vmin
ƒvƒvmax :

ð2Þ

Here c is a vector of objective coefficients and cv is the way we write the inner product
of c and v. vmin and vmax are column vectors representing lower and upper bounds
(respectively) on each of the r fluxes. Irreversibility constraints on reactions can be
expressed by setting vmin or vmax to 0. Reversible reactions without lower (or upper)
bound get 2‘ (or 1‘).

Typically, a few fluxes will be fixed to some experimentally determined value or one
of their bounds correspond to a measured value. All predictions are relative to a few
fixed fluxes and therefore FBA predicts yields (ratios of flux). FBA typically involves
maximizing a growth rate given a fixed uptake rate of a given nutrient. In fact in our
computations we have minimized the uptake rate under a fixed growth rate. A little
thought should make it clear that this does not effect the space of optimal solutions (it
only scales every value involved by the same constant multiplicative factor).
Therefore, we keep the presentation of the method as if we maximize growth rate.

Minimization of uptake rate is modeled by choosing the objective coefficient
corresponding to the uptake reaction equal to 1 and all other objective coefficients
equal to 0. Fixing growth rate is simply a matter of setting the flux rate corresponding
to the reaction representing growth to the fixed value (making the upper and lower
bound on the variable equal to this value). As is common practice in LP 1‘ and 2‘

are not regarded as bounds, whence constraints of the type vj . 2‘ or vj , ‘ are
omitted in the LP. As we will explain later, it is essential not to replace the ‘’s by
arbitrarily large enough constants. Although this does not influence the optimal
solution value it causes the polyhedral structure to change in a significant and
undesirable way.

To facilitate the exposition we express the feasible set in (2) as a set of inequalities
only. This is easily obtained by rewriting (2) as

maximize f vð Þ~cv

subject to Nv§0

{Nv§0

vj§vmin
j , for all j with vmin

j ={?

{vj§vmin
j , for all j with vmin

j =?:

ð3Þ

We write then the set of all these constraints shortly as Av $ b.

For genome scale model analysis we use PySCeS-CBM (an unpublished but online
available extension of the PySCeS software22,23) for reading, editing, translating and
writing genome-scale models. However, other constraint based modelling tools e.g.
the COBRA Toolkit could also be used32.

In general optimal solutions of FBA programs are hardly ever unique. Suppose that
the optimal value of (3) is Z* then we are interested in describing the polyhedron

cv§Z�

Av§b
ð4Þ

in terms of its extremities: vertices, rays and linealities (see the Results section and the
Supplementary Information).

Mathematical software exists for conversion between the two descriptions. Most
popular are methods based on either the Double Description Method or for specific
polytopes Reverse Search enumeration10,2 e.g. implemented in the software CDD and
LRS9,2. However, a theoretically efficient method for enumerating the vertices of
polytopes has yet to be found. Indeed it is a major open question in computational
geometry if such a method exists. This, together with the enormous number of
vertices that we usually encounter in the high-dimensional polyhedra involved in
modelling metabolism, implies that there is no guarantee that existing software will be
able to cope with our problems. Indeed, initial attempts to do so in the
literature19,44–46,40,37 have reported vast numbers of vertices for small, reduced meta-
bolic systems (hundreds of thousands of vertices is not atypical) or intractability.
While these studies focussed on enumeration of entire metabolic networks we con-
sider an analogous problem i.e. the enumeration of an optimal FBA space. We do this
for complete genome scale metabolic networks by reducing the complexity of the
problem, not by finding a better conversion method, but by smart preprocessing.

Our approach can be thought of as working in several steps. We work with rational
(i.e. exact) arithmetic.

1. Compute the FBA optimum. We formulate the FBA program as the LP (3)
described in the main text. We solve the LP using QSOPT_EX version 2.5.01, a
rational LP-solver. Let Z* be the optimal FBA value.

2. Formulate the optimal FBA set. This is done simply by replacing the objective in
the LP by the optimality restriction f(v) $ Z*. We write this constraint together
with the set Av $ b of all constraints, as expressed in (4), shortly as Dv $ d.

3. Perform Flux Variability Analysis (FVA). For each flux vj, j 5 1, …, r we solve,
using QSOPT_EX, two linear programs: Fz

j ~ max vjjDv§d
� �

and

F{
j ~ min vjjDv§d

� �
.

4. Remove fixed fluxes. For each variable vj for which Fz
j ~F{

j , remove

from D the corresponding column Dj and subtract Fz
j Dj from d. Delete the rows

that have now become all-0-rows. Let the new system be D9v9 $ d9.
5. Compute a basis for the lineality space. The lineality space of the polyhedron is

given by the null-space of D9, i.e., all solutions to the system D9v9 5 0. Compute a
basis for this linear subspace using a linear algebra library (such as JLINALG17).

6. Compute rays and vertices of the system D9v9 $ d9. For genomescale systems we
use the enumeration program POLCO (version 4.2.0) for this41. Note that POLCO

automatically detects whether the system has a lineality space, but it does not
report a basis for it, it only returns rays and vertices.

7. Reintroduce the fixed fluxes that were removed earlier. In each of the vertices
reintroduce the fluxes that are fixed across all optima and were removed. Note
the latter fluxes have value 0 in rays and linealities.

To detect the subnetworks resulting from the vertices found, a complete metabolic
subnetwork/module analysis was performed in three steps (details of these steps are
found in the Supplementary Information):

1. The vertices are translated in an array K, which is scanned for fixed and variable
fluxes in order to now generate a sub-matrix K9 by removing the fixed fluxes from
K;

2. Using K9 the correlation coefficients are calculated, which are then stored as the
correlation coefficient matrix, P;

3. Define a graph with vertices the row indices of P and an edge between m and n if
and only if Pm,n ? 0. Each connected component of this graph corresponds to a
metabolic module/subnetwork. For each metabolic module/subnetwork a pat
tern matching algorithm is used to determine the number of unique flux dis
tributions that occur within a particular module, across all vertices.
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