109 research outputs found

    The mechanics of fibre-reinforced sand

    Get PDF
    Fibres can be an effective means of reinforcing soils. This paper presents data from laboratory triaxial tests on quartzitic sand reinforced with polypropylene fibres. By keeping the studied composite consistent throughout the study (host sand and fibre characteristics kept constant), it has been possible to develop a framework of behaviour for the sand-fibre material, which provides a solid base for future research on fibre-reinforced soils. Data from previous work and from new tests have been analysed within the Critical State framework, that is in terms of normal compression line, critical state line and state boundary surface.published_or_final_versio

    A Unique Relationship Determining Strength of Silty/Clayey Soils - Portland Cement Mixes

    Get PDF
    This technical note advances the understanding of the key parameters controlling unconfined compressive strength (qu) of artificially cemented silty/clayey soils by considering distinct moisture contents, distinct specimen porosities (η), different Portland cement contents and any curing time periods. The qu values of the specimens moulded for each curing period were normalized (i.e. divided) by the qu attained by a specimen with a specific porosity/cement ratio. A unique relationship was found, establishing the relationship between strength for artificially cemented silty/clayey soils considering all porosities, Portland cement amounts, moisture contents and curing periods studied. From a practical viewpoint, this means that, at limit, carrying out only one unconfined compression test with a silty/clayey soil specimen, moulded with a specific Portland cement amount, a specific porosity and moisture content and cured for a given time period, allows the determination of a general relationship equation that controls the strength for an entire range of porosities and cement contents, reducing considerably the amount of moulded specimens and reducing projects development cost and time

    Mechanical Properties of Calcareous Fly Ash Stabilised Soil

    Get PDF
    Construction of any type of structure on clayey ground could be problematic due to the high swelling potential and/or low strength characteristics of the soil. This can lead to low stability or differential settlement of the ground. Many soil stabilization techniques have been proposed to prevent the uneven settlement and failure of the soil. Stabilization of soil with class C fly ash offers many advantages such as improving engineering caracteristics, being cost-effective and being environmentally friendly. Class C fly ash chemically reacts with clay which results in a more durable and stronger soil. It has been shown by various researchers that fly ash-stabilized soil is typically stiff and strong even though there is no available standard or guidelines for the use of fly ash in construction industry. This paper presents the results from a program of experimental research on stabilization of a fine-grained soil with fly ash. Laboratory experiments, including Atterberg limits, compaction, uniaxial, and consolidation tests, were conducted on samples of a clay soil with different percentages of fly ash. The results show that adding fly ash decreased the plasticity index, increased compressive strength, and decreased the swelling and compressibility index. The maximum dry density increased and optimum moisture content decreased with addition of over 5 % fly ash by dry weight of the soil.Turkish governmentEuropean Union Horizon 202

    Durability of reclaimed asphalt pavement–coal fly ash–carbide lime blends under severe environmental conditions

    Get PDF
    The sustainable use of industrial residue in enhancing the long-term performance of reclaimed asphalt pavement (RAP) has been proven to be effective under freeze–thaw and wet–dry conditions. This study focuses on coal fly ash (FA) and carbide lime (CL) as the enhancing agents. It evaluates how the durability and long-term performance of compacted RAP–FA–CL mixtures are impacted by dry unit weight and lime content. The tested mixture’s specimens were moulded in three layers through static compaction inside a cylindrical mould. Several single-level variables were used in the stabilisation process. Among these were: FA content of 25%, optimum water content of 9% (modified effort) and seven days of curing. Additionally, three target dry unit weights (17, 18 and 19 kN/m3 – the last of which was determined using the modified Proctor energy) and three percentages of lime content (3%, 5% and 7%) were used for a comparative analysis. The tested specimens’ accumulated loss of mass (after wetting–drying and freezing–thawing cycles) and splitting tensile strength were both evaluated as a function of the porosity/lime index. The experiments revealed that compacted RAP–coal FA–CL mixtures performed noticeably worse when subjected to freezing–thawing cycles than when subjected to wetting–drying cycles. These results indicate an increase in the breadth of the porosity/lime index, as it is shown to control the long-term performance of compacted RAP–coal FA–CL mixtures, in addition to controlling their mechanical response

    Soil stabilization with lime for the construction of forest roads

    Get PDF
    The mechanical performance of soil stabilization using lime to improve forest roads was assessed. This study was conducted with lateritic soil (LVAd30) using lime content of 2% in the municipality of Niquelândia, Goiás state, Brazil. Geotechnical tests of soil characterization, compaction, and mechanical strength were performed applying different compaction efforts and curing periods. The results showed that lime content significantly changed the mechanical performance of natural soil, increasing its mechanical strength and load-carrying capacity. Compaction effort and curing time provided different responses in the unconfined compressive strength (UCS) and California Bearing Ratio (CBR) tests. The best UCS value (786.59 kPa) for the soil-lime mixture was achieved with modified compaction effort and curing time of 28 days. In the CBR test, soil-lime mixtures compacted at intermediate and modified efforts and cured for 28 days were considered for application as subbase material of flexible road pavements, being a promising alternative for use in layers of forest roads
    • …
    corecore