This technical note advances the understanding of the key parameters controlling unconfined compressive strength (qu) of artificially cemented silty/clayey soils by considering distinct moisture contents, distinct specimen porosities (η), different Portland cement contents and any curing time periods. The qu values of the specimens moulded for each curing period were normalized (i.e. divided) by the qu attained by a specimen with a specific porosity/cement ratio. A unique relationship was found, establishing the relationship between strength for artificially cemented silty/clayey soils considering all porosities, Portland cement amounts, moisture contents and curing periods studied. From a practical viewpoint, this means that, at limit, carrying out only one unconfined compression test with a silty/clayey soil specimen, moulded with a specific Portland cement amount, a specific porosity and moisture content and cured for a given time period, allows the determination of a general relationship equation that controls the strength for an entire range of porosities and cement contents, reducing considerably the amount of moulded specimens and reducing projects development cost and time