67,896 research outputs found

    Biomechanics of foetal movement.

    Get PDF
    © 2015, AO Research Institute. All rights reserved.Foetal movements commence at seven weeks of gestation, with the foetal movement repertoire including twitches, whole body movements, stretches, isolated limb movements, breathing movements, head and neck movements, jaw movements (including yawning, sucking and swallowing) and hiccups by ten weeks of gestational age. There are two key biomechanical aspects to gross foetal movements; the first being that the foetus moves in a dynamically changing constrained physical environment in which the freedom to move becomes increasingly restricted with increasing foetal size and decreasing amniotic fluid. Therefore, the mechanical environment experienced by the foetus affects its ability to move freely. Secondly, the mechanical forces induced by foetal movements are crucial for normal skeletal development, as evidenced by a number of conditions and syndromes for which reduced or abnormal foetal movements are implicated, such as developmental dysplasia of the hip, arthrogryposis and foetal akinesia deformation sequence. This review examines both the biomechanical effects of the physical environment on foetal movements through discussion of intrauterine factors, such as space, foetal positioning and volume of amniotic fluid, and the biomechanical role of gross foetal movements in human skeletal development through investigation of the effects of abnormal movement on the bones and joints. This review also highlights computational simulations of foetal movements that attempt to determine the mechanical forces acting on the foetus as it moves. Finally, avenues for future research into foetal movement biomechanics are highlighted, which have potential impact for a diverse range of fields including foetal medicine, musculoskeletal disorders and tissue engineering

    Zambia: 'One Zambia, One Nation, Many Languages'

    Get PDF

    Studies on the Predisposing Factors of Protein Energy Malnutrition Among Pregnant Women in a Nigerian Community

    Get PDF
    Protein Energy Malnutrition (PEM) continues to be a major public health problem in developing countries and affects mostly infants, young children, pregnant and lactating mothers. This study was carried on some of the factors that predispose pregnant women to PEM and hence identify groups at greater risk. A total of 1387 pregnant women (910 in the urban area and 477 in the rural areas) were recruited for the study. Anthropometric indices of weight, height and Body Mass Index (BMI) of the pregnant women were measured and semi structured questionnaires were used to elicit information on possible predisposing factors such as age, level of education, parity, child spacing etc. Results obtained showed that the mean weight and height of the rural pregnant women, were significantly (p<0.0001) lower than those of the urban pregnant women. The mean BMI of the rural subjects, was also significantly (p< 0.0027) lower than that of the urban subjects. Analysis of the effect of age showed that the younger age category (24 years and below) had significantly (p<0.0001) lower mean BMI and higher prevalence of PEM while the effect of level of education showed significantly (p<0006) lower mean BMI and higher PEM prevalence among the less educated (no formal and primary education). Those with parity of two, one and primipara showed significantly (p<0.0175) lower mean BMI while child spacing did not have any significant effect on both mean BMI and prevalence of PEM. The implications of these findings are discussed and recommendations made on how to tackle the problem

    Development and validation of the Surgical Outcome Risk Tool (SORT).

    Get PDF
    Existing risk stratification tools have limitations and clinical experience suggests they are not used routinely. The aim of this study was to develop and validate a preoperative risk stratification tool to predict 30-day mortality after non-cardiac surgery in adults by analysis of data from the observational National Confidential Enquiry into Patient Outcome and Death (NCEPOD) Knowing the Risk study

    Reproducibility of the bronchoconstrictive response to eucapnic voluntary hyperpnoea

    Get PDF
    Background: Eucapnic voluntary hyperpnoea (EVH) is considered an effective bronchoprovocation challenge for identifying exercise-induced bronchoconstriction (EIB). However, the reproducibility of the hyperpnoea-induced bronchoconstriction (HIB) response elicited by EVH remains unknown and was therefore the focus of this study. Methods: Two cohorts of 16 physically active males (each cohort comprised 8 controls and 8 with physician diagnosis of asthma) participated in two studies of the short- and long-term reproducibility of the bronchoconstrictive response to an EVH test with dry air. EVH was performed on days 0, 7, 14, and 21 (short-term study), and 0, 35, and 70 (long-term study). HIB was diagnosed by a ≥10% fall in forced expiratory volume in 1 s (FEV1) after EVH. Results: On day 0 of the short-term study, FEV1 fell by 2 ± 1% (P < 0.05) and 27 ± 18% (P < 0.01) from pre-to post-EVH in control and HIB-positive groups respectively. The post-EVH fall in FEV1 did not differ across the short-term study test days. In the HIB-positive group, the day-to-day coefficient of variation, reproducibility, and smallest meaningful change for the fall in FEV1 were 12%, 328 mL, and 164 mL, respectively. On day 0 of the long-term study, FEV1 fell by 2 ± 2% and 25 ± 18% (P < 0.01) after EVH in control and HIB-positive groups respectively. The post-EVH fall in FEV1 did not differ across the long-term study test days. In the HIB-positive group, the day-to-day coefficient of variation, reproducibility, and smallest meaningful change for the fall in FEV1 were 10%, 196 mL, and 98 mL respectively. Conclusion: The EVH test elicits a reproducible bronchoconstrictive response in physically active males with physician diagnosed asthma. These data thus support the clinical utility of the EVH test for EIB screening and monitoring

    Collisions and Mergers of Disk Galaxies: Hydrodynamics of Star Forming Gas

    Full text link
    We summarize the results of numerical simulations of colliding gas-rich disk galaxies in which the impact velocity is set parallel to the spin axes of the two galaxies. The effects of varying the impact speed are studied with particular attention to the resulting gaseous structures and shockwave patterns, and the time needed to produce these structures. The simulations employ an N-body treatment of the stars and dark matter, together with an SPH treatment of the gas, in which all components of the models are gravitationally active. The results indicate that for such impact geometries, collisions can lead to the very rapid formation of a central, rapidly rotating, dense gas disk, and that in all cases extensive star formation is predicted by the very high gas densities and prevalence of shocks, both in the nucleus and out in the galactic disks. As the dense nucleus is forming, gas and stars are dispersed over very large volumes, and only fall back towards the nucleus over long times. In the case of low impact velocities, this takes an order of magnitude more time than that needed for the formation of a dense nucleus.Comment: To be published in Proceedings of 'The Evolution of Galaxies III- From simple approaches to self-consistent models,' held in Kiel, Germany, July 2002, Astrophysics and Space Science (Kluwer), vol. 284, p. 479, 200

    Judgement and supply chain dynamics

    Get PDF
    Forecasting demand at the individual stock-keeping-unit (SKU) level often necessitates the use of statistical methods, such as exponential smoothing. In some organizations, however, statistical forecasts will be subject to judgemental adjustments by managers. Although a number of empirical and ‘laboratory’ studies have been performed in this area, no formal OR modelling has been conducted to offer insights into the impact such adjustments may have on supply chain performance and the potential development of mitigation mechanisms. This is because of the associated dynamic complexity and the situation-specific nature of the problem at hand. In conjunction with appropriate stock control rules, demand forecasts help decide how much to order. It is a common practice that replenishment orders may also be subject to judgemental intervention, adding further to the dynamic system complexity and interdependence. The system dynamics (SD) modelling method can help advance knowledge in this area, where mathematical modelling cannot accommodate the associated complexity. This study, which constitutes part of a UK government funded (EPSRC) project, uses SD models to evaluate the effects of forecasting and ordering adjustments for a wide set of scenarios involving: three different inventory policies; seven different (combinations of) points of intervention; and four different (combinations of) types of judgmental intervention (optimistic and pessimistic). The results enable insights to be gained into the performance of the entire supply chain. An agenda for further research concludes the paper

    Fault slip-rate variations during crustal-scale strain localisation, central Italy

    Get PDF
    Rates of plate motion are generally uniform over 10–102 Myrs timescales. Faults between tectonic plates might, therefore, be expected to show temporally-uniform slip-rates if the same number of faults remain active. For an extending region of the Eurasia-Africa plate boundary, Italy, finite throw values (vertical component of the slip) for seismogenic normal faults are less than that predicted when recent throw-rates are extrapolated over the fault lifetimes. The effect correlates with distance from the fault system tips and demonstrates that the slip-rates on centrally-located faults have increased with time. Neighbouring normal faults were active in the Quaternary but show no signs of surface faulting during the latest Pleistocene to Holocene. Death of these faults has provided the extra strain per unit time to drive the increased slip-rates measured on other faults. Thus, fault interaction and death modify slip-rates and seismic hazards associated with plate tectonics
    • …
    corecore