29,620 research outputs found

    Minimal mass-size of a stable 3He cluster

    Get PDF
    The minimal number of 3He atoms required to form a bound cluster has been estimated by means of a Diffusion Monte Carlo procedure within the fixed-node approximation. Several importance sampling wave functions have been employed in order to consider different shell-model configurations. The resulting upper bound for the minimal number is 32 atoms.Comment: 2 pages, no figure

    Large mixing angles for neutrinos from infrared fixed points

    Full text link
    Radiative amplification of neutrino mixing angles may explain the large values required by solar and atmospheric neutrino oscillations. Implementation of such mechanism in the Standard Model and many of its extensions (including the Minimal Supersymmetric Standard Model) to amplify the solar angle, the atmospheric or both requires (at least two) quasi-degenerate neutrino masses, but is not always possible. When it is, it involves a fine-tuning between initial conditions and radiative corrections. In supersymmetric models with neutrino masses generated through the Kahler potential, neutrino mixing angles can easily be driven to large values at low energy as they approach infrared pseudo-fixed points at large mixing (in stark contrast with conventional scenarios, that have infrared pseudo-fixed points at zero mixing). In addition, quasi-degeneracy of neutrino masses is not always required.Comment: 36 pages, 7 ps figure

    Excited states of 4He droplets

    Get PDF
    We study low-lying excited states of 4He clusters up to a cluster size of 40 atoms in a variational framework. The ansatz wave function combines two- and three-body correlations, coming from a translationally invariant configuration interaction description, and Jastrow-type short-range correlation. We have previously used this scheme to determine the ground-state energies of 4He and 3He clusters. Here we present an extension of this ansatz wave function having a good quantum angular momentum L. The variational procedure is applied independently to the cases with L = 0,2,4, and upper bounds for the corresponding energies are thus obtained. Moreover, centroid energies for L excitations are calculated through the use of sum rules. A comparison with previous calculations is also made.Fil: Guardiola, R.. Facultad de Física / Dpto de Física Atómica y Nuclear; EspañaFil: Navarro, J.. Csic - Univ. de Valencia / Inst. de Física Corpuscular; EspañaFil: Portesi, Mariela Adelina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentin

    The spectra of mixed 3^3He-4^4He droplets

    Get PDF
    The diffusion Monte Carlo technique is used to calculate and analyze the excitation spectrum of 3^3He atoms bound to a cluster of 4^4He atoms, by using a previously determined optimum filling of single-fermion orbits with well defined orbital angular momentum LL, spin SS and parity quantum numbers. The study concentrates on the energies and shapes of the three kinds of states for which the fermionic part of the wave function is a single Slater determinant: maximum LL or maximum SS states within a given orbit, and fully polarized clusters. The picture that emerges is that of systems with strong shell effects whose binding and excitation energies are essentially determined over configuration at fixed number of particles and spin, i.e., by the monopole properties of an effective Hamiltonian.Comment: 14 pages, 15 figure

    Theoretical Constraints on the Vacuum Oscillation Solution to the Solar Neutrino Problem

    Get PDF
    The vacuum oscillation (VO) solution to the solar anomaly requires an extremely small neutrino mass splitting, Delta m^2_{sol}\leq 10^{-10} eV^2. We study under which circumstances this small splitting (whatever its origin) is or is not spoiled by radiative corrections. The results depend dramatically on the type of neutrino spectrum. If m_1^2 \sim m_2^2 \geq m_3^2, radiative corrections always induce too large mass splittings. Moreover, if m_1 and m_2 have equal signs, the solar mixing angle is driven by the renormalization group evolution to very small values, incompatible with the VO scenario (however, the results could be consistent with the small-angle MSW scenario). If m_1 and m_2 have opposite signs, the results are analogous, except for some small (though interesting) windows in which the VO solution may be natural with moderate fine-tuning. Finally, for a hierarchical spectrum of neutrinos, m_1^2 << m_2^2 << m_3^2, radiative corrections are not dangerous, and therefore this scenario is the only plausible one for the VO solution.Comment: 13 pages, LaTeX, 3 ps figures (psfig.sty

    Symmetries in two-dimensional dilaton gravity with matter

    Get PDF
    The symmetries of generic 2D dilaton models of gravity with (and without) matter are studied in some detail. It is shown that δ2\delta_2, one of the symmetries of the matterless models, can be generalized to the case where matter fields of any kind are present. The general (classical) solution for some of these models, in particular those coupled to chiral matter, which generalizes the Vaidya solution of Einstein Gravity, is also given.Comment: Minor changes have been made; the references have been updated and some added; 11 pages. To appear in Phys. Rev.
    corecore