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Minimal mass-size of a stable
3
He cluster
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The minimal number of 3He atoms required to form a bound cluster has been estimated by means
of a Diffusion Monte Carlo procedure within the fixed-node approximation. Several importance
sampling wave functions have been employed in order to consider different shell-model configurations.
The resulting upper bound for the minimal number is 32 atoms.
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Helium clusters are unique systems for studying the properties of finite sized quantum objects. The first systematic
microscopic calculation of their ground state properties was carried out by Pandharipande and coworkers [1] eighteen
years ago. One interesting finding is that, contrary to the 4He case, a minimum number of 3He atoms is required
to create a stable cluster, as a consequence of the large zero-point motion and the Pauli effect. The calculations of
Ref. [1] were based on an optimized trial wave function, where the fermions are assumed to fill harmonic oscillator
single-particle states 1s21p61d102s21f142p6 . . . The outcome was that twenty atoms are not enough to form a bound
system, but forty atoms are bound, and in between a critical or threshold number exists for having stable clusters.
From the experimental point of view, there is only indirect evidence of such a critical number, since the smaller 3He
systems detected insofar contains thousand of atoms.

The critical number was calculated in Ref. [2], by using a non-local finite-range density functional approach. The
usual Kohn-Sham procedure provided the residual interaction required to perform a configuration interaction calcu-
lation. The obtained critical number was 29 atoms. Afterwards, we carried out [3, 4] a variational microscopic study
based on the two-body He-He interaction known as HFD-B(He) interaction [5], which reproduces accurately the prop-
erties of both 4He and 3He liquid. The trial wave function contained a Jastrow-correlated part and a self-adjustable
translationally invariant configuration interaction part, including up to three particle-hole excitations. Due to the
variational character of the computational procedure, only an upper bound was obtained, and we concluded that the
critical number is less or equal to 34 atoms.

In order to improve this estimate we have carried out several calculations within the fixed-node Diffusion Monte
Carlo (DMC) procedure [6, 7], for selected systems near the previously determined critical number. The importance-
sampling wave functions have been constructed in a similar way to the variational forms previously used in Refs. [3, 4],
but with some modifications. First of all, the confining part of the two-body Jastrow correlation used here has an
exponential shape, instead of a gaussian one. Because of the longer range of the exponential shape one may expect
to be more appropriate for systems near the binding threshold. Apart from this, the same backflow correlation was
used, but the configuration interaction part has not been included, with the objetive of having a fast difussion Monte
Carlo algorithm.

The other relevant modification is related to the antisymmetric part of the wave function. The fermionic antisym-
metry is considered by means of the product of two Slater determinants, one for each spin orientation. In the present
calculation we have assumed several shell-model orderings for these determinantal parts, and not simply the ordering
related to the harmonic-oscillator single-particle potential previously considered. Actually, nothing is known about
the ordering of shells. The only indirect information comes from the study of a single 3He atom tied to a core of 4He
atoms, where calculations indicate an order based on the orbital angular momentum, namely 1s 1p 1d 1f . . ., with
probably the 2s level being interleaved between the n = 1 levels [8, 9]. Therefore, we have considered configurations
with a fixed occupancy 1s2 1p6 1d10, the N = 18 major shell, and several distributions of the remaining particles
between the 2s and the 1f shell, which are classified by the value of the total spin S.

The actual calculations have been carried out with a time slice τ = 0.00025 K−1, with an average population of
1000 walkers and for 10000 time steps, plus 1000 previous steps in order to reach the stability. To obtain an estimate
of the variance, the sampling steps were grouped into blocks of 100 moves.

The obtained results are presented in Table I. The N = 34 cluster appears clearly bound, as well as one of the
configurations chosen for N = 33. This last result has the interest of suggesting the 2s shell to be deeper bound than
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TABLE I: Ground state energies E (in K) obtained for several clusters near the critical binding number. For a given number
N of atoms, the shell-model configuration and the value of the total spin S are indicated.

N Config. S E (K)

31 2s21f11 3/2 Unbound

31 2s21f11 1/2 Unbound

32 2s21f12 0 −0.27 ± 0.03

32 2s21f12 1 −0.23 ± 0.03

32 2s01f14 0 Unbound

33 2s11f14 1/2 Unbound

33 2s21f13 1/2 −0.86 ± 0.04

34 2s21f14 0 −1.52 ± 0.04

the 1f shell.
Regarding the N = 32 cluster we had an initial guess in favor of the configuration 1s0 1f14, because it would

correspond to a closed shell. However the actual calculations show that this configuration does not result in a bound
state, preferring instead to complete the 2s shell. This is not surprising once it has been established the shell ordering
in the N = 33 case. Note that the total spin of the configuration 2s21f12 can have the two values S = 0 and 1. Taking
into account the statistical errors, one may conclude that these states are bound with the same binding energy. Either
these states are degenerate or the difference in energy is smaller than our statistical errors, i.e. of the order of ten
mK. Given that the obtained energies are very close to zero, the imaginary time evolution was carried out for these
two cases for as much as 40000 time steps.

Finally we have considered the N = 31 cluster, with two spin states (S = 1/2 and S = 3/2) of the 2s21f11

configuration. It turns out that neither of these states is bound, their energy being close to zero but positive.
In conclusion, we have find N = 32 as an upper bound to the minimal mass-size of a stable 3He cluster. The

various configurations here considered correspond in practice to probe different nodal surfaces. It is worth stressing
that our results indicate that, within the computational statistical errors, the binding energy is independent of the spin
coupling, depending only on the chosen configuration. Finally, it should also be mentioned that the separation energy
for N = 34 (0.66± 0.06 K) is almost the same as that of N = 33 (0.59± 0.05, 0.64± 0.05 K), thus suggesting a single-
particle structure of these fermionic clusters, with a residual interaction compatible with zero. The determination of
the precise critical number should require a calculation beyond the variational fixed-node approximation, and it is
not excluded that the result could depend on the He-He interaction employed in the practical calculation.

Acknowledgments

This work has been supported by MCyT/FEDER (Spain), grant number BMF2001-0262 and GV (Spain), grant
number GV2003-002. One of us (RG) acknowledges the IReS (Strasbourg) by his hospitality.

[1] V. R. Pandharipande, S. C. Pieper, and R. B. Wiringa, Phys. Rev. B 34, 4571 (1986).
[2] M. Barranco, J. Navarro and A. Poves, Phys. Rev. Lett. 78, 4729 (1997).
[3] R. Guardiola and J. Navarro, Phys. Rev. Lett. 84, 1144 (2000).
[4] R. Guardiola, Phys. Rev. B 62, 3416 (2000).
[5] R.A. Aziz, F.R. McCourt and C.C.K. Wong, Mol. Phys. 61, 1487 (1987).
[6] P.J. Reynolds, D.M. Ceperley, B.J. Alder and W.A. Lester Jr., J. Chem. Phys. 77, 5593 (1982).
[7] J.W. Moskowitz, K.E. Schmidt, M.A. Lee and H.M. Kalos, J. Chem. Phys. 77, 349 (1982).
[8] J. Navarro, A. Poves, M. Barranco and M. Pi, Phys. Rev. A 69, 023202 (2004).
[9] S. Fantoni, R. Guardiola and J. Navarro, Phys. Rev. A 70, 023206 (2004).


	Acknowledgments
	References

