6 research outputs found
Statistical Emulation of Winter Ambient Fine Particulate Matter Concentrations From Emission Changes in China
Air pollution exposure remains a leading public health problem in China. The use of chemical transport models to quantify the impacts of various emission changes on air quality is limited by their large computational demands. Machine learning models can emulate chemical transport models to provide computationally efficient predictions of outputs based on statistical associations with inputs. We developed novel emulators relating emission changes in five key anthropogenic sectors (residential, industry, land transport, agriculture, and power generation) to winter ambient fine particulate matter (PM2.5) concentrations across China. The emulators were optimized based on Gaussian process regressors with Matern kernels. The emulators predicted 99.9% of the variance in PM2.5 concentrations for a given input configuration of emission changes. PM2.5 concentrations are primarily sensitive to residential (51%–94% of first‐order sensitivity index), industrial (7%–31%), and agricultural emissions (0%–24%). Sensitivities of PM2.5 concentrations to land transport and power generation emissions are all under 5%, except in South West China where land transport emissions contributed 13%. The largest reduction in winter PM2.5 exposure for changes in the five emission sectors is by 68%–81%, down to 15.3–25.9 μg m−3, remaining above the World Health Organization annual guideline of 10 μg m−3. The greatest reductions in PM2.5 exposure are driven by reducing residential and industrial emissions, emphasizing the importance of emission reductions in these key sectors. We show that the annual National Air Quality Target of 35 μg m−3 is unlikely to be achieved during winter without strong emission reductions from the residential and industrial sectors
Regional policies targeting residential solid fuel and agricultural emissions can improve air quality and public health in the Greater Bay Area and across China
Air pollution exposure is a leading public health problem in China. The majority of the total air pollution disease burden is from fine particulate matter (PM2.5) exposure, with smaller contributions from ozone (O3) exposure. Recent emission reductions have reduced PM2.5 exposure. However, levels of exposure and the associated risk remain high, some pollutant emissions have increased, and some sectors lack effective emission control measures. We quantified the potential impacts of relevant policy scenarios on ambient air quality and public health across China. We show that PM2.5 exposure inside the Greater Bay Area (GBA) is strongly controlled by emissions outside the GBA. We find that reductions in residential solid fuel use and agricultural fertilizer emissions result in the greatest reductions in PM2.5 exposure and the largest health benefits. A 50% transition from residential solid fuel use to liquefied petroleum gas outside the GBA reduced PM2.5 exposure by 15% in China and 3% within the GBA, and avoided 191,400 premature deaths each year across China. Reducing agricultural fertilizer emissions of ammonia by 30% outside the GBA reduced PM2.5 exposure by 4% in China and 3% in the GBA, avoiding 56,500 annual premature deaths across China. Our simulations suggest that reducing residential solid fuel or industrial emissions will reduce both PM2.5 and O3 exposure, whereas other policies may increase O3 exposure. Improving particulate air quality inside the GBA will require consideration of residential solid fuel and agricultural sectors, which currently lack targeted policies, and regional cooperation both inside and outside the GBA
