424 research outputs found

    Monoacylated Cellular Prion Proteins Reduce Amyloid-beta-Induced Activation of Cytoplasmic Phospholipase A2 and Synapse Damage

    Get PDF
    Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by the accumulation of amyloid-β (Aβ) and the loss of synapses. Aggregation of the cellular prion protein (PrPC) by Aβ oligomers induced synapse damage in cultured neurons. PrPC is attached to membranes via a glycosylphosphatidylinositol (GPI) anchor, the composition of which affects protein targeting and cell signaling. Monoacylated PrPC incorporated into neurons bound “natural Aβ”, sequestering Aβ outside lipid rafts and preventing its accumulation at synapses. The presence of monoacylated PrPC reduced the Aβ-induced activation of cytoplasmic phospholipase A2 (cPLA2) and Aβ-induced synapse damage. This protective effect was stimulus specific, as treated neurons remained sensitive to α-synuclein, a protein associated with synapse damage in Parkinson’s disease. In synaptosomes, the aggregation of PrPC by Aβ oligomers triggered the formation of a signaling complex containing the cPLA2.a process, disrupted by monoacylated PrPC. We propose that monoacylated PrPC acts as a molecular sponge, binding Aβ oligomers at the neuronal perikarya without activating cPLA2 or triggering synapse damage

    Quantitative transcription factor binding kinetics at the single-molecule level

    Full text link
    We have investigated the binding interaction between the bacteriophage lambda repressor CI and its target DNA using total internal reflection fluorescence microscopy. Large, step-wise changes in the intensity of the red fluorescent protein fused to CI were observed as it associated and dissociated from individually labeled single molecule DNA targets. The stochastic association and dissociation were characterized by Poisson statistics. Dark and bright intervals were measured for thousands of individual events. The exponential distribution of the intervals allowed direct determination of the association and dissociation rate constants, ka and kd respectively. We resolved in detail how ka and kd varied as a function of 3 control parameters, the DNA length L, the CI dimer concentration, and the binding affinity. Our results show that although interaction with non-operator DNA sequences are observable, CI binding to the operator site is not dependent on the length of flanking non-operator DNA.Comment: 34 pages, 10 figures, accepted by Biophysical Journa

    The cholesterol ester cycle regulates signalling complexes and synapse damage caused by amyloid-ß

    Get PDF
    Cholesterol is required for the formation and function of some signalling platforms. In synaptosomes, amyloid-β (Aβ) oligomers, the causative agent in Alzheimer's disease, bind to cellular prion proteins (PrPC) resulting in increased cholesterol concentrations, translocation of cytoplasmic phospholipase A2 (cPLA2, also known as PLA2G4A) to lipid rafts, and activation of cPLA2. The formation of Aβ-PrPC complexes is controlled by the cholesterol ester cycle. In this study, Aβ activated cholesterol ester hydrolases, which released cholesterol from stores of cholesterol esters and stabilised Aβ-PrPC complexes, resulting in activated cPLA2. Conversely, cholesterol esterification reduced cholesterol concentrations causing the dispersal of Aβ-PrPC complexes. In cultured neurons, the cholesterol ester cycle regulated Aβ-induced synapse damage; cholesterol ester hydrolase inhibitors protected neurons, while inhibition of cholesterol esterification significantly increased Aβ-induced synapse damage. An understanding of the molecular mechanisms involved in the dispersal of signalling complexes is important as failure to deactivate signalling pathways can lead to pathology. This study demonstrates that esterification of cholesterol is a key factor in the dispersal of Aβ-induced signalling platforms involved in the activation of cPLA2 and synapse degeneration

    Solution structure of the inner DysF domain of myoferlin and implications for limb girdle muscular dystrophy type 2b

    Get PDF
    Mutations in the protein dysferlin, a member of the ferlin family, lead to limb girdle muscular dystrophy type 2B and Myoshi myopathy. The ferlins are large proteins characterised by multiple C2 domains and a single C-terminal membrane-spanning helix. However, there is sequence conservation in some of the ferlin family in regions outside the C2 domains. In one annotation of the domain structure of these proteins, an unusual internal duplication event has been noted where a putative domain is inserted in between the N- and C-terminal parts of a homologous domain. This domain is known as the DysF domain. Here, we present the solution structure of the inner DysF domain of the dysferlin paralogue myoferlin, which has a unique fold held together by stacking of arginine and tryptophans, mutations that lead to clinical disease in dysferlin

    Characterization of a canola C2 domain gene that interacts with PG, an effector of the necrotrophic fungus Sclerotinia sclerotiorum

    Get PDF
    Sspg1d, one of endopolygalacturonases, is an important fungal effector secreted by the necrotrophic fungus Sclerotinia sclerotiorum during early infection. Using sspg1d as bait, a small C2 domain protein (designated as IPG-1) was identified by yeast two-hybrid screening of a canola cDNA library. Deletion analysis confirmed that the C-terminus of IPG-1 is responsible for its interaction with sspg1d in the yeast two-hybrid assay. The sspg1d/IPG-1 interaction was further confirmed in plant cells by a biomolecular fluorescence complementation (BiFC) assay. A transient expression assay showed that the IPG-1–GFP fusion protein was targeted to the plasma membrane and nucleus in onion epidermal cells. Following treatment with a Ca2+ ionophore, it was distributed throughout the cytosol. Real-time PCR assay demonstrated that IPG-1 was highly induced by Sclerotinia sclerotiorum in canola leaves and stems. Southern blot analysis indicated the presence of about five homologues of IPG-1 in the canola genome. Two additional members of the IPG-1gene family were isolated by RT-PCR. Their sequence similarity with IPG-1 is as high as 95%. However, they did not interact with sspg1d in the yeast two-hybrid assay. Possible roles of IPG-1 and its association with sspg1d in the defence signalling pathway were discussed

    Otoferlin is a calcium sensor that directly regulates SNARE-mediated membrane fusion

    Get PDF
    Mutations in otoferlin are linked to human hearing loss. New research defines a function for this C2 domain–containing protein in synaptic vesicle exocytosis in cochlear hair cells

    Molecular diversity of phospholipase D in angiosperms

    Get PDF
    BACKGROUND: The phospholipase D (PLD) family has been identified in plants by recent molecular studies, fostered by the emerging importance of plant PLDs in stress physiology and signal transduction. However, the presence of multiple isoforms limits the power of conventional biochemical and pharmacological approaches, and calls for a wider application of genetic methodology. RESULTS: Taking advantage of sequence data available in public databases, we attempted to provide a prerequisite for such an approach. We made a complete inventory of the Arabidopsis thaliana PLD family, which was found to comprise 12 distinct genes. The current nomenclature of Arabidopsis PLDs was refined and expanded to include five newly described genes. To assess the degree of plant PLD diversity beyond Arabidopsis we explored data from rice (including the genome draft by Monsanto) as well as cDNA and EST sequences from several other plants. Our analysis revealed two major PLD subfamilies in plants. The first, designated C2-PLD, is characterised by presence of the C2 domain and comprises previously known plant PLDs as well as new isoforms with possibly unusual features-catalytically inactive or independent on Ca(2+). The second subfamily (denoted PXPH-PLD) is novel in plants but is related to animal and fungal enzymes possessing the PX and PH domains. CONCLUSIONS: The evolutionary dynamics, and inter-specific diversity, of plant PLDs inferred from our phylogenetic analysis, call for more plant species to be employed in PLD research. This will enable us to obtain generally valid conclusions

    Short hairpin RNA-mediated knockdown of protein expression in Entamoeba histolytica

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Entamoeba histolytica </it>is an intestinal protozoan parasite of humans. The genome has been sequenced, but the study of individual gene products has been hampered by the lack of the ability to generate gene knockouts. We chose to test the use of RNA interference to knock down gene expression in <it>Entamoeba histolytica</it>.</p> <p>Results</p> <p>An episomal vector-based system, using the <it>E. histolytica </it>U6 promoter to drive expression of 29-basepair short hairpin RNAs, was developed to target protein-encoding genes in <it>E. histolytica</it>. The short hairpin RNAs successfully knocked down protein levels of all three unrelated genes tested with this system: Igl, the intermediate subunit of the galactose- and N-acetyl-D-galactosamine-inhibitable lectin; the transcription factor URE3-BP; and the membrane binding protein EhC2A. Igl levels were reduced by 72%, URE3-BP by 89%, and EhC2A by 97%.</p> <p>Conclusion</p> <p>Use of the U6 promoter to drive expression of 29-basepair short hairpin RNAs is effective at knocking down protein expression for unrelated genes in <it>Entamoeba histolytica</it>, providing a useful tool for the study of this parasite.</p
    corecore