138 research outputs found

    Evaluation of the Luciferase Assay-Based In Vitro Elicitation Test for Serum IgE

    Get PDF
    ABSTRACTBackgroundAn in vitro elicitation test employing human high-affinity IgE receptor-expressing rat mast cell lines appears to be a useful method for measuring mast cell activation using a patient's IgE and an allergen; however, such cell lines are sensitive to human complements in the serum. We have recently developed a new luciferase-reporting mast cell line (RS-ATL8) to detect IgE crosslinking-induced luciferase expression (EXiLE) with relatively low quantities of serum IgE.MethodsA total of 30 patients suspected of having egg white (EW) allergy were subjected to an oral food challenge (OFC) test; then, the performances of EW-specific serum IgE (CAP-FEIA), EW-induced degranulation, and EXiLE responses in RS-ATL8 cells were compared using receiver-operating characteristic (ROC) curve analysis. The patients' sera were diluted to 1:100, which causes no cytotoxicity when sensitizing the RS-ATL8 cells for the degranulation and EXiLE tests.ResultsThe area under the ROC curves was highest in the EXiLE test (0.977), followed by CAP-FEIA (0.926) and degranulation (0.810). At an optimal cutoff range (1.648-1.876) calculated from the ROC curve of the EXiLE test, sensitivity and specificity were 0.944 and 0.917, respectively. A 95% positive predictive value was given at a cutoff level of 2.054 (fold increase in luciferase expression) by logistic regression analysis. Conclusions: In contrast to in vivo tests, the EXiLE test appears to be a useful tool in diagnosing patients suspected of having IgE-dependent EW allergy without the risk of severe systemic reactions

    Assessment of congestion and clinical outcomes in patients with chronic heart failure using shear wave elasticity

    Get PDF
    Aims The relief of congestion is essential for the prevention of worsening heart failure (HF) resulting in hospitalizations. Assessment of the degree of organ congestion in the chronic phase of HF is important for determining therapeutic strategies. The aim of this study was to evaluate the efficacy of shear wave (SW) elasticity for assessing congestion and clinical outcomes in patients with chronic HF. Methods and results We prospectively enrolled 345 consecutive patients with chronic HF who underwent SW elastography at outpatient clinic. Patients were divided into two groups according to the median value of SW elasticity: low group (SW elasticity = 6.4 kPa, n = 169). The endpoint was cardiovascular death or hospitalization for HF. During the median follow-up period of 19 months (range: 7-36 months), cardiovascular death or hospitalization for HF occurred in 4 patients of low group and 27 patients of high group. In high group, 8 patients died, and 19 patients were hospitalized for HF. In low group, 3 patients died, and 1 patient was hospitalized. Kaplan-Meier analysis showed that the event-free survival rate was worse in high group than in low group (log-rank test, P = 0.004). After adjusting for variables, high SW elasticity was independently related to cardiac events. In multivariate regression analysis, SW elasticity was correlated with left atrial volume index, early diastolic mitral inflow velocity to mitral annular velocity ratio, and inferior vena cava diameter. Conclusions The SW elasticity reflected haemodynamic congestion in patients with chronic HF, which was related to cardiac events

    Nuclear Accumulation of HSP70 in Mouse Skeletal Muscles in Response to Heat Stress, Aging, and Unloading With or Without Reloading

    Get PDF
    The purpose of this study was to investigate the nuclear accumulation of heat shock protein 70 (HSP70), a molecular chaperonin in mouse skeletal muscle in response to aging, heat stress, and hindlimb unloading with or without reloading. Profiles of HSP70-specific nuclear transporter Hikeshi in skeletal muscles were also evaluated. Heat stress-associated nuclear accumulation of HSP70 was observed in slow soleus (SOL) and fast plantaris (PLA) muscles of young (10-week-old) mice. Mean nuclear expression level of HSP70 in slow medial gastrocnemius (MGAS) and PLA muscles of aged (100-week-old) mice increased ~4.8 and ~1.7 times, compared to that of young (10-week-old) mice. Reloading following 2-week hindlimb unloading caused accumulation of HSP70 in myonuclei in MGAS and PLA of young mice ( p < 0.05). However, reloading-associated nuclear accumulation of HSP70 was not observed in both types of muscles of aged mice. On the other hand, 2-week hindlimb unloading had no impact on the nuclear accumulation of HSP70 in both muscles of young and aged mice. Nuclear expression level of Hikeshi in both MGAS and PLA in mice was suppressed by aging. No significant changes in the nuclear Hikeshi in both muscles were induced by unloading with or without reloading. Results of this study indicate that the nuclear accumulation of HSP70 might show a protective response against cellular stresses in skeletal muscle and that the protective response may be suppressed by aging. Protective response to aging might depend on muscle fiber types

    Hepatic interferon-stimulated genes are differentially regulated in the liver of chronic hepatitis C patients with different interleukin-28B genotypes

    Get PDF
    Pretreatment up-regulation of hepatic interferon (IFN)-stimulated genes (ISGs) has a stronger association with the treatment-resistant interleukin (IL)28B minor genotype (MI; TG/GG at rs8099917) than with the treatment-sensitive IL28B major genotype (MA; TT at rs8099917). We compared the expression of ISGs in the liver and blood of 146 patients with chronic hepatitis C who received pegylated IFN and ribavirin combination therapy. Gene expression profiles in the liver and blood of 85 patients were analyzed using an Affymetrix GeneChip (Affymetrix, Santa Clara, CA). ISG expression was correlated between the liver and blood of the MA patients, whereas no correlation was observed in the MI patients. This loss of correlation was the result of the impaired infiltration of immune cells into the liver lobules of MI patients, as demonstrated by regional gene expression analysis in liver lobules and portal areas using laser capture microdissection and immunohistochemical staining. Despite having lower levels of immune cells, hepatic ISGs were up-regulated in the liver of MI patients and they were found to be regulated by multiple factors, namely, IL28A/B, IFN-λ4, and wingless-related MMTV integration site 5A (WNT5A). Interestingly, WNT5A induced the expression of ISGs, but also increased hepatitis C virus replication by inducing the expression of the stress granule protein, GTPase-activating protein (SH3 domain)-binding protein 1 (G3BP1), in the Huh-7 cell line. In the liver, the expression of WNT5A and its receptor, frizzled family receptor 5, was significantly correlated with G3BP1. Conclusions: Immune cells were lost and induced the expression of other inflammatory mediators, such as WNT5A, in the liver of IL28B minor genotype patients. This might be related to the high level of hepatic ISG expression in these patients and the treatment-resistant phenotype of the IL28B minor genotype. © 2014 by the American Association for the Study of Liver Diseases.This article has Supplemental materrial and methods

    Support for UNRWA's survival

    Get PDF
    The United Nations Relief and Works Agency for Palestine Refugees in the Near East (UNRWA) provides life-saving humanitarian aid for 5·4 million Palestine refugees now entering their eighth decade of statelessness and conflict. About a third of Palestine refugees still live in 58 recognised camps. UNRWA operates 702 schools and 144 health centres, some of which are affected by the ongoing humanitarian disasters in Syria and the Gaza Strip. It has dramatically reduced the prevalence of infectious diseases, mortality, and illiteracy. Its social services include rebuilding infrastructure and homes that have been destroyed by conflict and providing cash assistance and micro-finance loans for Palestinians whose rights are curtailed and who are denied the right of return to their homeland

    Differential Metabolisms of Green Leaf Volatiles in Injured and Intact Parts of a Wounded Leaf Meet Distinct Ecophysiological Requirements

    Get PDF
    Almost all terrestrial plants produce green leaf volatiles (GLVs), consisting of six-carbon (C6) aldehydes, alcohols and their esters, after mechanical wounding. C6 aldehydes deter enemies, but C6 alcohols and esters are rather inert. In this study, we address why the ability to produce various GLVs in wounded plant tissues has been conserved in the plant kingdom. The major product in completely disrupted Arabidopsis leaf tissues was (Z)-3-hexenal, while (Z)-3-hexenol and (Z)-3-hexenyl acetate were the main products formed in the intact parts of partially wounded leaves. 13C-labeled C6 aldehydes placed on the disrupted part of a wounded leaf diffused into neighboring intact tissues and were reduced to C6 alcohols. The reduction of the aldehydes to alcohols was catalyzed by an NADPH-dependent reductase. When NADPH was supplemented to disrupted tissues, C6 aldehydes were reduced to C6 alcohols, indicating that C6 aldehydes accumulated because of insufficient NADPH. When the leaves were exposed to higher doses of C6 aldehydes, however, a substantial fraction of C6 aldehydes persisted in the leaves and damaged them, indicating potential toxicity of C6 aldehydes to the leaf cells. Thus, the production of C6 aldehydes and their differential metabolisms in wounded leaves has dual benefits. In disrupted tissues, C6 aldehydes and their α,β-unsaturated aldehyde derivatives accumulate to deter invaders. In intact cells, the aldehydes are reduced to minimize self-toxicity and allow healthy cells to survive. The metabolism of GLVs is thus efficiently designed to meet ecophysiological requirements of the microenvironments within a wounded leaf
    corecore