53 research outputs found

    Stoichiometric Constraints Do Not Limit Successful Invaders: Zebra Mussels in Swedish Lakes

    Get PDF
    Elemental imbalances of carbon (C): nitrogen (N): phosphorus (P) ratios in food resources can constrain the growth of grazers owning to tight coupling between growth rate, RNA allocation and biomass P content in animals. Testing for stoichiometric constraints among invasive species is a novel challenge in invasion ecology to unravel how a successful invader tackles ecological barriers in novel ecosystems.We examined the C:P and N:P ratios and the condition factor of a successful invader in lakes, the zebra mussel (Dreissena polymorpha), collected from two Swedish lakes. Concurrently, we analyzed the elemental composition of the food (seston) and tissue of the mussels in which nutrient composition of food and mussels varied over time. Zebra mussel condition factor was weakly related to the their own tissue N:P and C:P ratios, although the relation with the later ratio was not significant. Smaller mussels had relatively lower tissue N:P ratio and higher condition factor. There was no difference in C:P and N:P ratios between seston and mussels' tissues. Our results indicated that the variation in nutrient stoichiometry of zebra mussels can be explained by food quality and quantity.Our study suggests that fitness of invasive zebra mussels is not constrained by nutrient stoichiometry which is likely to be important for their proliferation in novel ecosystems. The lack of imbalance in C:P and N:P ratios between seston and mussels along with high tissue C:P ratio of the mussel allow them to tolerate potential P limitation and maintain high growth rate. Moreover, zebra mussels are able to change their tissue C:P and N:P ratios in response to the variation in elemental composition of their food. This can also help them to bypass potential nutrient stoichiometric constraints. Our finding is an important step towards understanding the mechanisms contributing to the success of exotic species from stoichiometric principles

    Improving assessments of coastal ecosystems – Adjusting coastal fish indicators to variation in ambient environmental factors

    Get PDF
    The application of ecological indictors for assessing the environmental status of ecosystems play an important role for effective management. However, natural variability may limit the indicators’ ability to provide relevant information about anthropogenic pressures and guide management action. Coastal fish species are not only a resource for commercial and recreational fisheries but also key ecosystem components in the Baltic Sea, and is therefore used as management objectives within the EU Marine Strategy Framework Directive and the HELCOM Baltic Sea Action Plan. A challenge, however, is that the distribution and abundance of coastal fish populations in Baltic Sea is also influenced by spatial and temporal variation in ambient environmental factors. Here, using 16 years of monitoring data, over a latitudinal range of 56 – 66°N along the Swedish Baltic Sea coast, we evaluated the effect of variability in water temperature and depth, and wave exposure for three indicators of environmental status assessment in the Baltic Sea: Abundance of perch, Abundance of Cyprinids, and Abundance of Piscivores. Generalized linear mixed models (GLMM) revealed an overall positive linear relationship between water temperature for all indicators, and overall negative linear relationships to depth and wave exposure. When adjusting indicator values using the parameter estimates from the GLMM models, the variability and 95 % confidence interval for all three indicators were reduced. The adjustment, however, did not have a strong impact on the assessment of the ecological state of the indicator. Our results suggest that adjusting coastal fish indicators to variation in local ambient environmental factors will increase their precision, and hence, the confidence in the assessment of environmental status

    Improving assessments of coastal ecosystems – Adjusting coastal fish indicators to variation in ambient environmental factors

    Get PDF
    The application of ecological indictors for assessing the environmental status of ecosystems play an important role for effective management. However, natural variability may limit the indicators’ ability to provide relevant information about anthropogenic pressures and guide management action. Coastal fish species are not only a resource for commercial and recreational fisheries but also key ecosystem components in the Baltic Sea, and is therefore used as management objectives within the EU Marine Strategy Framework Directive and the HELCOM Baltic Sea Action Plan. A challenge, however, is that the distribution and abundance of coastal fish populations in Baltic Sea is also influenced by spatial and temporal variation in ambient environmental factors. Here, using 16 years of monitoring data, over a latitudinal range of 56 – 66°N along the Swedish Baltic Sea coast, we evaluated the effect of variability in water temperature and depth, and wave exposure for three indicators of environmental status assessment in the Baltic Sea: Abundance of perch, Abundance of Cyprinids, and Abundance of Piscivores. Generalized linear mixed models (GLMM) revealed an overall positive linear relationship between water temperature for all indicators, and overall negative linear relationships to depth and wave exposure. When adjusting indicator values using the parameter estimates from the GLMM models, the variability and 95 % confidence interval for all three indicators were reduced. The adjustment, however, did not have a strong impact on the assessment of the ecological state of the indicator. Our results suggest that adjusting coastal fish indicators to variation in local ambient environmental factors will increase their precision, and hence, the confidence in the assessment of environmental status

    Effects of fishery and environmental factors on a novel multispecies pot targeting European lobster (Homarus gammarus), Atlantic cod (Gadus morhua) and edible crab (Cancer pagurus)

    Get PDF
    Small-scale fisheries along the Swedish west coast are often operated by using small vessels, targeting multiple species by means of pots and gillnets. Fisheries using pots targeting shellfish such as European lobster (Homarus gammarus), and edible crab (Cancer pagurus) along the Swedish west coast have a relatively high economic value. However, gillnet fisheries targeting demersal fish are currently diminishing primarily due to depleted fish stocks and increased seal depredation. Small-scale fisheries are considered sustainable fisheries due to the use of selective gears and low energy consumption. To be able to retain and promote a sustainable small-scale fishery, there is a need to develop an economically viable fishery, where selective, seal-safe and sustainable gear is utilized. One potential way forward could be to develop a pot to be used for multiple target species traditionally caught in pots and gillnets. Since both shellfish and cod (Gadus morhua) can be caught in pots, the objective of this work was to develop a multispecies pot targeting lobster, edible crab and cod. Seven multi-species pots were developed and tested off the west coast of Sweden between 2015 and 2017. The catch rate, defined as catch per pot per day (CPUE) of lobster, edible crab and cod, was evaluated taking into regard fisheries-related variables such as pot type, bait, soak time, seal damage and abundance of species in the pot. The relative CPUE of lobster and cod was highest in larger pots with two chambers and three open entrances. The highest CPUE for lobster was 0.24 individuals per pot and the highest CPUE for cod was 0.17 individuals per pot. Pots with entrances equipped with funnels, preventing cod from escaping, also had a high cod CPUE (0.23 individuals per). The CPUE of crabs was not affected by pot type. For cod, lobster and crab, the CPUE significantly decreased with increasing soak time. Seal damage only occurred when cod were trapped in the pots and the CPUE of cod was higher in pots subjected to seal damage, indicating that seals raid pots specifically when cods are trapped inside

    Developing management goals and associated assessment methods for Sweden’s nationally managed fish stocks : a project synthesis

    Get PDF
    This report summarizes and synthesizes results from the Swedish Agency of Marine and Water Management (SwAM, or HaV) funded project “Förvaltningsmål för nationella arter (Management goals for nationally managed species)”. The objectives of the project have been to promote the development of management goals and associated status assessment methods and indicators, as well as reference points, for some nationally managed fish stocks both in coastal as well as freshwater areas. The report focusses largely on species and stocks that can be defined as data-poor. Such stocks are characterised by marked limitations in data availability and/or resources allocated to detailed analytical stock projections. Data-poor stocks also often lack carefully formulated management goals and associated methods and indicators for assessing stock status. In this report, we provide an overview of potential assessment methods and indicators and try to synthesise how they work and what the strengths and weaknesses are by applying them to selected data poor stocks such as pikeperch, pike, whitefish, and vendace. We also discuss how they relate to different potential management goals and provide recommendations for their application. We grouped the indicators and assessment methods by the three categories that are now used in the yearly status assessment framework provided by SLU Aqua (Resursöversikten/Fiskbarometern) – i) mortality, ii) abundance/biomass and iii) size/age structure. The results are also described for these three main categories of assessment indicators. Included is also a status report from a size- and age-based population dynamics model (Stock Synthesis 3) that is being developed for pikeperch in Lake Hjälmaren.An important experience from the project is that to improve the assessment methods for Swedish national fish stocks, it is important that managers develop both general as well as more detailed quantitative goals for the individual stocks. This should ideally be conducted in various forms of collaboration with the main stakeholders and scientists involved with assessment as participatory processes foster legitimacy. Carefully articulated management goals, which are possible to translate into quantitative targets, will facilitate the development of various approaches and methods to monitor stock statuses. Given the strong and complex interactions of fish and their environments it is also important to consider other pressures than fisheries when developing indicators and assessment methods.Our synthesis highlights a number of areas where the assessment of data-poor stocks can be improved:1. Apply precautionary principles for data-limited stocks, particularly ones that are known to be vulnerable to exploitation.2. Tailor approaches to how fisheries are managed in Sweden. Swedish nationally managed fish stocks are not managed by quotas (with one exception, vendace in the Bothnian Bay) and do not aim for maximum sustainable yield. Instead, the coastal and inland fisheries are managed by regulating the effort in the small-scale commercial fisheries (number of fishers/licenses and amount of gear). Regulation of recreational and subsistence fisheries effort, in terms of licenses or number of fishers) is not applied, nor possible since the fisheries is lacking obligatory notification and reporting systems. All national fisheries, however, are regulated by various technical measures (closed areas, size-limits, bag-limits, gear restrictions etc). Thus, goals and assessment methods that result in harvest limits or quota recommendations expressed in e.g. biomass/numbers are difficult to use as basis for management. Instead, there is a need for alternative management goals and associated assessment methods.3. Use best practice methods and indicators and adapt as scientific knowledge is developed. Data-limited methods are developing rapidly, and new methods/approaches are proposed in the scientific literature every year. It is thus important to be updated on the most recent developments. 4. Clearly describe limitations/assumptions of methods used. It is important to be aware of and critically evaluate the assumptions underlying the analyses, and to carefully communicate uncertainty together with the stock status assessment.5. Be particularly careful with low sample numbers. Many indicators and methods can be applied also on small sample sizes, however, the accuracy and precision of the estimates risk being low in such cases.6. Accept that there is no "gold standard" for fisheries assessment. Each case study is unique and needs to be balanced against data availability, local needs and other important factors. This also means that analysts need to be careful when using generic reference levels or “borrowing” data from other stocks.7. If possible, use several different methods/indicators. Although several indicators aim to measure similar aspects of the stock, small methodological differences can support the overall interpretation of individual indicator values. It is particularly important to incorporate many aspects and indicators (size/age/abundance/mortality) in order to produce a balanced assessment.8. Develop means of communication. Indicators and goals should be easy to understand. However, interpretation of results from multi-indicator frameworks can be challenging. There is thus a need for finding ways of communication that can convey complicated results in a simple-to-understand manner.9. For details on additional improvements, we refer the reader to the sub-header “recommendations for the future” found under each chapter.The implementation of Stock Synthesis for pikeperch in Lake Hjälmaren showed that it is possible to develop a more ambitious and detailed stock assessment model for a relatively data-poor stock. The model results partly support earlier interpretations of the development of the stock and the importance of the changes in regulations in 2001 (increased minimum size, increased mesh size and reduced mortality of undersized pikeperch). Before the model can be implemented and used for practical management, a number of actions for improvement are needed, which are highlighted in the relevant chapter. The most important next step is establishing management goals and reference levels for this stock. We recommend that such a dialogue is initiated by managers. The fisheries management goals should consider both biomass, fisheries mortality and size-based targets.To conclude, we stress the importance of improving all ongoing aspects related to the assessments of data-poor Swedish stocks. Strong local stocks and sustainable fisheries are vital for a variety of fisheries-related businesses and practices, particularly in rural areas, providing economical and societal value. Fishes also have important roles in aquatic food-webs and it is important that ecological values are managed wisely in order to reach targets for water quality, ecosystem structure and diversity. Given the strong and complex interactions of fish and their environments it is also important to consider other pressures than fisheries when developing indicators and assessment methods

    Assessing nitrogen dynamics model and the role of artificial lagoon in effluent loading of shrimp farms in Gomishan wetland, southern Caspian Sea

    Get PDF
    Shrimp farming increases the nutrients, especially nitrogen in the water resources reducing water quality. This study was conducted to evaluate the nitrogen dynamics in white shrimp (Litopenaeus vannamei) farms and the role of artificial lagoon (24 ha) in reducing nitrogen levels in Gomishan coastal wetland, the eastern Caspian Sea. The results indicated that at the end of the 4-month breeding period, the amounts of nitrogen and phosphorus introduced into Gomishan wetland were calculated as to 220.157 and 39 tons, respectively in a breeding area covering 830 hectares. Nitrogen values (based on nitrate) calculated based on the relationship between the basin and the discharge of the outlet channel of the site at the time of complete emptying of the farms, were calculated to be approximately 121.8 tons per breeding time that it had an important role in eliminating about 45% of nutrient pollution and reducing the concentration of dissolved nitrogen. Moreover, nitrogen isotopic trace was observed in shrimp samples, in similar levels in the samples of both shrimp pond and lagoon, which emphasizes the role of feeding from natural food, especially benthic fauna. Overall, due to the decline of Caspian Sea water level, Gomishan coastal wetland is drying, and the output of shrimp farms is currenly the only source supplying water for the wetland. Hence, appropriate management strategies could minimize the amounts of nutrients into the natural water whilst aiding wetland's survaival

    Marine Strategy Framework Directive - Descriptor 2, Non-Indigenous Species, Delivering solid recommendations for setting threshold values for non-indigenous species pressure on European seas

    Get PDF
    Marine Non-Indigenous Species (NIS) are animals and plants introduced accidently or deliberately into the European seas, originating from other seas of the globe. About 800 marine non-indigenous species (NIS) currently occur in the European Union national marine waters, several of which have negative impacts on marine ecosystem services and biodiversity. Under the Marine Strategy Framework Directive (MSFD) Descriptor 2 (D2), EU Member States (MSs) need to consider NIS in their marine management strategies. The Descriptor D2 includes one primary criterion (D2C1: new NIS introductions), and two secondary criteria (D2C2 and D2C3). The D2 implementation is characterized by a number of issues and uncertainties which can be applicable to the Descriptor level (e.g. geographical unit of assessment, assessment period, phytoplanktonic, parasitic, oligohaline NIS, etc.), to the primary criterion D2C1 level (e.g. threshold values, cryptogenic, questionable species, etc), and to the secondary criteria D2C2 and D2C3. The current report tackles these issues and provides practical recommendations aiming at a smoother and more efficient implementation of D2 and its criteria at EU level. They constitute a solid operational output which can result in more comparable D2 assessments among MSs and MSFD regions/subregions. When it comes to the policy-side, the current report calls for a number of different categories of NIS to be reported in D2 assessments, pointing the need for the species to be labelled/categorised appropriately in the MSFD reporting by the MSs. These suggestions are proposed to be communicated to the MSFD Working Group of Good Environmental Status (GES) and subsequently to the Marine Strategy Coordination Group (MSCG) of MSFD. Moreover, they can serve as an input for revising the Art. 8 Guidelines

    Non-indigenous species refined national baseline inventories : A synthesis in the context of the European Union's Marine Strategy Framework Directive

    Get PDF
    Refined baseline inventories of non-indigenous species (NIS) are set per European Union Member State (MS), in the context of the Marine Strategy Framework Directive (MSFD). The inventories are based on the initial assessment of the MSFD (2012) and the updated data of the European Alien Species Information Network, in collaboration with NIS experts appointed by the MSs. The analysis revealed that a large number of NIS was not reported from the initial assessments. Moreover, several NIS initially listed are currently considered as native in Europe or were proven to be historical misreportings. The refined baseline inventories constitute a milestone for the MSFD Descriptor 2 implementation, providing an improved basis for reporting new NIS introductions, facilitating the MSFD D2 assessment. In addition, the inventories can help MSs in the establishment of monitoring systems of targeted NIS, and foster cooperation on monitoring of NIS across or within shared marine subregions. Highlights • Refined MSFD baseline inventories of non-indigenous species (NIS) are set in EU. • The inventories are given per EU Member State (MS) and MSFD subregion up to 2012. • The NIS lists provide a basis for reporting new NIS introductions in EU after 2012. • Our work constitutes a milestone for the MSFD Descriptor 2 implementation
    corecore