8 research outputs found

    Main results of the first experimental campaign in the stellarator W7-X

    Get PDF
    A summary of the first operational phase (OP1.1) at the stellarator W7-X is given. The operational setup of heating and diagnostics as well the results of experiments are briefly described. Plasma parameters and confinement are better than expected: Te > 8 keV and Ti > 2 keV at ne ≈ 3×1019 m-3 yielding β0 ≈ 2.5 %. The results for ECR heating with X2-mode as well the ECCD are in good agreement with the theory predictions. The heating scenario with the O2-mode alone was successfully first time performed. Stellarator specific regime of core “electron root” confinement was obtained

    Measurements of the deuterium ion toroidal rotation in the DIII-D tokamak and comparison to neoclassical theory

    No full text
    Bulk ion toroidal rotation plays a critical role in controlling microturbulence and MHD stability as well as yielding important insight into angular momentum transport and the investigation of intrinsic rotation. So far, our understanding of bulk plasma flow in hydrogenic plasmas has been inferred from impurity ion velocity measurements and neoclassical theoretical calculations. However, the validity of these inferences has not been tested rigorously through direct measurement of the main-ion rotation in deuterium plasmas, particularly in regions of the plasma with steep pressure gradients where very large differences can be expected between bulk ion and impurity rotation. New advances in the analysis of wavelength-resolved D emission on the DIII-D tokamak [J. L. Luxon et al., Fusion Sci. Technol. 48, 807 (2002)] have enabled accurate measurements of the main-ion (deuteron) temperature and toroidal rotation. The D emission spectrum is accurately fit using a model that incorporates thermal deuterium charge exchange, beam emission, and fast ion D (FIDA) emission spectra. Simultaneous spectral measurements of counter current injected and co current injected neutral beams permit a direct determination of the deuterium toroidal velocity. Time-dependent collisional radiative modeling of the photoemission process is in quantitative agreement with measured spectral characteristics. L-mode discharges with low beam ion densities and broad thermal pressure profiles exhibit deuteron temperature and toroidal rotation velocities similar to carbon. However, intrinsic rotation H-mode conditions and plasmas with internal transport barriers exhibit differences between core deuteron and carbon rotation which are inconsistent with the sign and magnitude of the neoclassical predictions. © 2012 American Institute of Physics. α α

    Active spectroscopic measurements of the bulk deuterium properties in the DIII-D tokamak (invited).

    No full text
    The neutral-beam induced D(α) emission spectrum contains a wealth of information such as deuterium ion temperature, toroidal rotation, density, beam emission intensity, beam neutral density, and local magnetic field strength magnitude |B| from the Stark-split beam emission spectrum, and fast-ion D(α) emission (FIDA) proportional to the beam-injected fast ion density. A comprehensive spectral fitting routine which accounts for all photoemission processes is employed for the spectral analysis. Interpretation of the measurements to determine physically relevant plasma parameters is assisted by the use of an optimized viewing geometry and forward modeling of the emission spectra using a Monte-Carlo 3D simulation code

    Imaging key aspects of fast ion physics in the DIII-D tokamak

    No full text
    Visible imaging has been used to provide the 2D spatial structure and temporal evolution of the profile of highenergy neutrals introduced by neutral beam injection, the fast ion profile and a variety of plasma instabilities in DIII-D plasmas; the combination of these techniques form a comprehensive fast ion physics diagnostic suite. The injected neutral profile is imaged in Doppler shifted D light induced by collisional excitation. Fast ion profile information was obtained through imaging of Doppler shifted fast ion D light (FIDA) emitted by re-neutralized energetic ions. Imaging of FIDA emission during sawtooth events shows a large central depletion following sawtooth crashes-indicative of a broad redistribution of fast ions. Two examples of instability structure measurements are given. Measurements of the detailed 2D poloidal structure of rotating tearing modes were obtained using spectrally filtered fast imaging of broadband visible bremsstrahlung emission, a method which is capable of imaging with high resolution the structure of coherent oscillations in the core of current and next-step fusion plasma experiments and can be applied to virtually any mode with a finite perturbed bremsstrahlung emissivity and frequency in the laboratory frame. Measurements are also presented of the n = 0 energetic particle geodesic acoustic mode which were made by observing fluctuations in active emission. © 2010 IAEA, Vienna Printed in the UK & the USA. α

    Magnetic configuration effects on the Wendelstein 7-X stellarator

    No full text
    The two leading concepts for confining high-temperature fusion plasmas are the tokamak and the stellarator. Tokamaks are rotationally symmetric and use a large plasma current to achieve confinement, whereas stellarators are non-axisymmetric and employ three-dimensionally shaped magnetic field coils to twist the field and confine the plasma. As a result, the magnetic field of a stellarator needs to be carefully designed to minimize the collisional transport arising from poorly confined particle orbits, which would otherwise cause excessive power losses at high plasma temperatures. In addition, this type of transport leads to the appearance of a net toroidal plasma current, the so-called bootstrap current. Here, we analyse results from the first experimental campaign of the Wendelstein 7-X stellarator, showing that its magnetic-field design allows good control of bootstrap currents and collisional transport. The energy confinement time is among the best ever achieved in stellarators, both in absolute figures (τE > 100 ms) and relative to the stellarator confinement scaling. The bootstrap current responds as predicted to changes in the magnetic mirror ratio. These initial experiments confirm several theoretically predicted properties of Wendelstein 7-X plasmas, and already indicate consistency with optimization measures
    corecore