370 research outputs found

    Prevalence and incidence of chronic conditions among adults with cerebral palsy: A systematic review and meta-analysis

    Get PDF
    Data availability statement: Data sharing is not applicable to this article as no new data were created or analyzed in this study.Supporting information is available online at https://onlinelibrary.wiley.com/doi/10.1111/dmcn.15526#support-information-section .Copyright © 2023 The Authors. Aim: To assess the prevalence and incidence of chronic conditions among adults with cerebral palsy (CP) and compare them to the prevalence and incidence among adults without CP. Method: We searched MEDLINE and Embase for studies reporting the prevalence or incidence of one or more chronic conditions among adults with CP. Two independent reviewers screened titles, abstracts, and full-text articles. Two independent reviewers extracted data relating to prevalence and incidence and appraised study quality. We performed random-effects meta-analyses to pool prevalence and incidence. Results: We identified 69 studies; 65 reported the prevalence of 53 conditions and 13 reported the incidence of 21 conditions. At least 20% of adults had the following conditions: depression (21%); anxiety (21%); mood affective disorders (23%); asthma (24%); hypertension (26%); epilepsy (28%); urinary incontinence (32%); malnutrition (38%); and scoliosis (46%). Adults with CP were more likely to have type 2 diabetes, anxiety, bipolar disorder, depression, schizophrenia, hypertension, ischaemic heart disease, stroke, cerebrovascular disease, asthma, liver disease, osteoarthritis, osteoporosis, underweight, and chronic kidney disease than adults without CP. Interpretation: These data from 18 countries, which provide an international perspective, may be used to promote awareness, identify targets for intervention, and inform the development of appropriate supports for adults with CP.Open access funding provided by IReL

    Competing magnetostructural phases in a semiclassical system

    Get PDF
    The interplay between charge, structure, and magnetism gives rise to rich phase diagrams in complex materials with exotic properties emerging when phases compete. Molecule-based materials are particularly advantageous in this regard due to their low energy scales, flexible lattices, and chemical tunability. Here, we bring together high pressure Raman scattering, modeling, and first principles calculations to reveal the pressure-temperature-magnetic field phase diagram of Mn[N(CN)2]2. We uncover how hidden soft modes involving octahedral rotations drive two pressure-induced transitions triggering the low ??? high magnetic anisotropy crossover and a unique reorientation of exchange planes. These magnetostructural transitions and their mechanisms highlight the importance of spin-lattice interactions in establishing phases with novel magnetic properties in Mn(II)-containing systems

    The Stress-Response Factor SigH Modulates the Interaction between Mycobacterium tuberculosis and Host Phagocytes

    Get PDF
    The Mycobacterium tuberculosis stress response factor SigH plays a crucial role in modulating the pathogen's response to heat, oxidative-stress, envelope damage and hypoxia. We hypothesized that the lack of this key stress response factor would alter the interaction between the pathogen and its host cells. We compared the interaction of Mtb, Mtb:Δ-sigH and a strain where the mutation had been genetically complemented (Mtb: Δ-sigH:CO) with primary rhesus macaque bone marrow derived macrophages (Rh-BMDMs). The expression of numerous inducible and homeostatic (CCL) β-chemokines and several apoptotic markers was induced to higher levels in the cells infected with Mtb:Δ-sigH, relative to Mtb or the complemented strain. The differential expression of these genes manifested into functional differences in chemotaxis and apoptosis in cells infected with these two strains. The mutant strain also exhibited reduced late-stage survival in Rh-BMDMs. We hypothesize that the product of one or more SigH-dependent genes may modulate the innate interaction of Mtb with host cells, effectively reducing the chemokine-mediated recruitment of immune effector cells, apoptosis of infected monocytes and enhancing the long-term survival and replication of the pathogen in this milieu The significantly higher induction of Prostaglandin Synthetase 2 (PTGS2 or COX2) in Rh-BMDMs infected with Mtb relative to Mtb: Δ-sigH may explain reduced apoptosis in Mtb-infected cells, as PTGS2 is known to inhibit p53-dependent apoptosis.The SigH-regulon modulates the innate interaction of Mtb with host phagocytes, perhaps as part of a strategy to limit its clearance and prolong its survival. The SigH regulon appears to be required to modulate innate immune responses directed against Mtb

    Proteins with Complex Architecture as Potential Targets for Drug Design: A Case Study of Mycobacterium tuberculosis

    Get PDF
    Lengthy co-evolution of Homo sapiens and Mycobacterium tuberculosis, the main causative agent of tuberculosis, resulted in a dramatically successful pathogen species that presents considerable challenge for modern medicine. The continuous and ever increasing appearance of multi-drug resistant mycobacteria necessitates the identification of novel drug targets and drugs with new mechanisms of action. However, further insights are needed to establish automated protocols for target selection based on the available complete genome sequences. In the present study, we perform complete proteome level comparisons between M. tuberculosis, mycobacteria, other prokaryotes and available eukaryotes based on protein domains, local sequence similarities and protein disorder. We show that the enrichment of certain domains in the genome can indicate an important function specific to M. tuberculosis. We identified two families, termed pkn and PE/PPE that stand out in this respect. The common property of these two protein families is a complex domain organization that combines species-specific regions, commonly occurring domains and disordered segments. Besides highlighting promising novel drug target candidates in M. tuberculosis, the presented analysis can also be viewed as a general protocol to identify proteins involved in species-specific functions in a given organism. We conclude that target selection protocols should be extended to include proteins with complex domain architectures instead of focusing on sequentially unique and essential proteins only

    Modelling of the effect of ELMs on fuel retention at the bulk W divertor of JET

    Get PDF
    Effect of ELMs on fuel retention at the bulk W target of JET ITER-Like Wall was studied with multi-scale calculations. Plasma input parameters were taken from ELMy H-mode plasma experiment. The energetic intra-ELM fuel particles get implanted and create near-surface defects up to depths of few tens of nm, which act as the main fuel trapping sites during ELMs. Clustering of implantation-induced vacancies were found to take place. The incoming flux of inter-ELM plasma particles increases the different filling levels of trapped fuel in defects. The temperature increase of the W target during the pulse increases the fuel detrapping rate. The inter-ELM fuel particle flux refills the partially emptied trapping sites and fills new sites. This leads to a competing effect on the retention and release rates of the implanted particles. At high temperatures the main retention appeared in larger vacancy clusters due to increased clustering rate

    Impact of fast ions on density peaking in JET: fluid and gyrokinetic modeling

    Get PDF
    The effect of fast ions on turbulent particle transport, driven by ion temperature gradient (ITG)/ trapped electron mode turbulence, is studied. Two neutral beam injection (NBI) heated JET discharges in different regimes are analyzed at the radial position ρt_{t}=0.6, one of them an L-mode and the other one an H-mode discharge. Results obtained from the computationally efficient fluid model EDWM and the gyro-fluid model TGLF are compared to linear and nonlinear gyrokinetic GENE simulations as well as the experimentally obtained density peaking. In these models, the fast ions are treated as a dynamic species with a Maxwellian background distribution. The dependence of the zero particle flux density gradient (peaking factor) on fast ion density, temperature and corresponding gradients, is investigated. The simulations show that the inclusion of a fast ion species has a stabilizing influence on the ITG mode and reduces the peaking of the main ion and electron density profiles in the absence of sources. The models mostly reproduce the experimentally obtained density peaking for the L-mode discharge whereas the H-mode density peaking is significantly underpredicted, indicating the importance of the NBI particle source for the H-mode density profile

    Current Research into Applications of Tomography for Fusion Diagnostics

    Get PDF
    Retrieving spatial distribution of plasma emissivity from line integrated measurements on tokamaks presents a challenging task due to ill-posedness of the tomography problem and limited number of the lines of sight. Modern methods of plasma tomography therefore implement a-priori information as well as constraints, in particular some form of penalisation of complexity. In this contribution, the current tomography methods under development (Tikhonov regularisation, Bayesian methods and neural networks) are briefly explained taking into account their potential for integration into the fusion reactor diagnostics. In particular, current development of the Minimum Fisher Regularisation method is exemplified with respect to real-time reconstruction capability, combination with spectral unfolding and other prospective tasks

    The role of ETG modes in JET-ILW pedestals with varying levels of power and fuelling

    Get PDF
    We present the results of GENE gyrokinetic calculations based on a series of JET-ITER-like-wall (ILW) type I ELMy H-mode discharges operating with similar experimental inputs but at different levels of power and gas fuelling. We show that turbulence due to electron-temperature-gradient (ETGs) modes produces a significant amount of heat flux in four JET-ILW discharges, and, when combined with neoclassical simulations, is able to reproduce the experimental heat flux for the two low gas pulses. The simulations plausibly reproduce the high-gas heat fluxes as well, although power balance analysis is complicated by short ELM cycles. By independently varying the normalised temperature gradients (omega(T)(e)) and normalised density gradients (omega(ne )) around their experimental values, we demonstrate that it is the ratio of these two quantities eta(e) = omega(Te)/omega(ne) that determines the location of the peak in the ETG growth rate and heat flux spectra. The heat flux increases rapidly as eta(e) increases above the experimental point, suggesting that ETGs limit the temperature gradient in these pulses. When quantities are normalised using the minor radius, only increases in omega(Te) produce appreciable increases in the ETG growth rates, as well as the largest increases in turbulent heat flux which follow scalings similar to that of critical balance theory. However, when the heat flux is normalised to the electron gyro-Bohm heat flux using the temperature gradient scale length L-Te, it follows a linear trend in correspondence with previous work by different authors

    Spectroscopic camera analysis of the roles of molecularly assisted reaction chains during detachment in JET L-mode plasmas

    Get PDF
    The roles of the molecularly assisted ionization (MAI), recombination (MAR) and dissociation (MAD) reaction chains with respect to the purely atomic ionization and recombination processes were studied experimentally during detachment in low-confinement mode (L-mode) plasmas in JET with the help of experimentally inferred divertor plasma and neutral conditions, extracted previously from filtered camera observations of deuterium Balmer emission, and the reaction coefficients provided by the ADAS, AMJUEL and H2VIBR atomic and molecular databases. The direct contribution of MAI and MAR in the outer divertor particle balance was found to be inferior to the electron-atom ionization (EAI) and electron-ion recombination (EIR). Near the outer strike point, a strong atom source due to the D+2-driven MAD was, however, observed to correlate with the onset of detachment at outer strike point temperatures of Te,osp = 0.9-2.0 eV via increased plasma-neutral interactions before the increasing dominance of EIR at Te,osp < 0.9 eV, followed by increasing degree of detachment. The analysis was supported by predictions from EDGE2D-EIRENE simulations which were in qualitative agreement with the experimental observations
    corecore