38 research outputs found

    Π‘Π˜ΠžΠ ΠΠ‘ΠŸΠ Π•Π”Π•Π›Π•ΠΠ˜Π• ΠŸΠžΠ›Π˜ΠœΠ•Π ΠΠžΠ™ Π’Π ΠΠΠ‘ΠŸΠžΠ Π’ΠΠžΠ™ ЀОРМЫ Π Π˜Π€ΠΠ‘Π£Π’Π˜ΠΠ

    Get PDF
    Background: One way to increase drug efficacy is to provide a drug delivery transport system to the target organ. A widely used method is to incorporate the drug in a biodegradable polymer composition with forming nanosized drug’s transport forms. Objective: Our aim was to investigate the tissue biodistribution of antibiotic rifabutin transport system based on lactic and glycolic acids copolymer, and to compare it with the pure substance of rifabutin. Methods: These substances were administered to two groups of rats intragastrically in the doses of 10Β mg/kg. After a certain period of time, the animals were sacrificed by cervical dislocation. Samples preparation for analysis was carried out of the liquid-liquid extraction. Active substance’s concentrations were measured by high performance liquid chromatography method. Results: The study included 8-week-aged Wistar rats of both sexes weighing 0.22Β±0.02 kg. Animals were divided into 2 groups. The study group received polymer form of antibiotic, and the comparison group received substance of rifabutin. In intervals of 10 min, 30 min, 1 h, 2 h, 4 h, 7 h, 15 h, 24 h after drug administration liver, lung, spleen, kidney, intestines, stomach, heart and brain were resected respectively. Organs were measured by their weight. The drug was not detected in the brain. Rifabutin was determined in other examined tissues within 10 minutes and the maximum drug concentration in organs was fixed in 1.5–3.5 hours after administration. The rifabutin concentrations defined in the lungs were significantly higher in polymer form (pΒ 0.05). The polymer form’s distribution coefficient was higher in the liver and lungs (15.83 and 10.14Β ΞΌg/g respectively) in comparison with the substance one. The minimum amount of the active ingredient was observed in the heart (0.02Β ΞΌg/g). Conclusion: It is shown that the inclusion of the drug in a polymeric form substantially alters its localization in organs and tissues. Extensive biodistribution nanorifabutin in lung tissue, liver and spleen is established.  Одним ΠΈΠ· Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΉ увСличСния эффСктивности лСкарствСнных срСдств являСтся созданиС транспортной систСмы доставки лСкарств Π² Ρ†Π΅Π»Π΅Π²ΠΎΠΉ ΠΎΡ€Π³Π°Π½. Π¨ΠΈΡ€ΠΎΠΊΠΎ распространСнный ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ β€” Π²ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ лСкарствСнного вСщСства Π² состав Π±ΠΈΠΎΠ΄Π΅Π³Ρ€Π°Π΄ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠ³ΠΎ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π° с ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π½Π°Π½ΠΎΡ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΠΉ транспортной Ρ„ΠΎΡ€ΠΌΡ‹ лСкарства. ЦСль исслСдования: ΠΈΠ·ΡƒΡ‡ΠΈΡ‚ΡŒ биораспрСдСлСниС ΠΏΠΎ тканям транспортной систСмы Π°Π½Ρ‚ΠΈΠ±ΠΈΠΎΡ‚ΠΈΠΊΠ° Ρ€ΠΈΡ„Π°Π±ΡƒΡ‚ΠΈΠ½Π° Π½Π° основС сополимСра ΠΌΠΎΠ»ΠΎΡ‡Π½ΠΎΠΉ ΠΈ Π³Π»ΠΈΠΊΠΎΠ»Π΅Π²ΠΎΠΉ кислоты, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΡΡ€Π°Π²Π½ΠΈΡ‚ΡŒ Π΅Π΅ с чистой субстанциСй Ρ€ΠΈΡ„Π°Π±ΡƒΡ‚ΠΈΠ½Π°. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹: ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Ρ‹ Π²Π²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΏΠ΅Ρ€ΠΎΡ€Π°Π»ΡŒΠ½ΠΎ, Ρ‡Π΅Ρ€Π΅Π· атравматичСский мСталличСский Π·ΠΎΠ½Π΄ Π² Π΄ΠΎΠ·Π΅ 10Β ΠΌΠ³/ΠΊΠ³. Π”Π°Π»Π΅Π΅ Ρ‡Π΅Ρ€Π΅Π· ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹Π΅ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ… умСрщвляли ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ дислокации ΡˆΠ΅ΠΉΠ½Ρ‹Ρ… ΠΏΠΎΠ·Π²ΠΎΠ½ΠΊΠΎΠ². ΠŸΡ€ΠΎΠ±ΠΎΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠ° ΠΎΡ€Π³Π°Π½ΠΎΠ² ΠΊ Π°Π½Π°Π»ΠΈΠ·Ρƒ ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΠ»Π°ΡΡŒ ΠΆΠΈΠ΄ΠΊΠΎΡΡ‚ΡŒ-Тидкостной экстракциСй. ΠšΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΡŽ Π΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π³ΠΎ вСщСства измСряли с использованиСм ΠΌΠ΅Ρ‚ΠΎΠ΄Π° высокоэффСктивной Тидкостной Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹: Π² исслСдованиС Π²ΠΊΠ»ΡŽΡ‡Π°Π»ΠΈ Π²ΠΎΡΡŒΠΌΠΈΠ½Π΅Π΄Π΅Π»ΡŒΠ½Ρ‹Ρ… крыс Π»ΠΈΠ½ΠΈΠΈ Wistar ΠΎΠ±ΠΎΠ΅Π³ΠΎ ΠΏΠΎΠ»Π° массой 0,22Β±0,02Β ΠΊΠ³. Π–ΠΈΠ²ΠΎΡ‚Π½Ρ‹Π΅ Π±Ρ‹Π»ΠΈ Ρ€Π°Π·Π΄Π΅Π»Π΅Π½Ρ‹ Π½Π° 2 Π³Ρ€ΡƒΠΏΠΏΡ‹. Π˜ΡΡΠ»Π΅Π΄ΡƒΠ΅ΠΌΠ°Ρ Π³Ρ€ΡƒΠΏΠΏΠ° ΠΏΠΎΠ»ΡƒΡ‡Π°Π»Π° Π°Π½Ρ‚ΠΈΠ±ΠΈΠΎΡ‚ΠΈΠΊ Π² ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅, Π° Π³Ρ€ΡƒΠΏΠΏΠ° сравнСния ΠΏΠΎΠ»ΡƒΡ‡Π°Π»Π° ΡΡƒΠ±ΡΡ‚Π°Π½Ρ†ΠΈΡŽ Ρ€ΠΈΡ„Π°Π±ΡƒΡ‚ΠΈΠ½Π°. Π§Π΅Ρ€Π΅Π· Π²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Π΅ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Ρ‹ 10Β ΠΌΠΈΠ½, 30Β ΠΌΠΈΠ½, 1Β Ρ‡, 2Β Ρ‡, 4Β Ρ‡, 7Β Ρ‡, 15Β Ρ‡, 24Β Ρ‡ послС ввСдСния ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠ»ΠΈ Ρ€Π΅Π·Π΅ΠΊΡ†ΠΈΡŽ ΠΏΠ΅Ρ‡Π΅Π½ΠΈ, Π»Π΅Π³ΠΊΠΈΡ…, сСлСзСнки, ΠΏΠΎΡ‡Π΅ΠΊ, ΠΊΠΈΡˆΠ΅Ρ‡Π½ΠΈΠΊΠ°, ΠΆΠ΅Π»ΡƒΠ΄ΠΊΠ°, сСрдца ΠΈ ΠΌΠΎΠ·Π³Π°, соотвСтствСнно, ΠΈ измСряли ΠΈΡ… массу. Π’ ΠΌΠΎΠ·Π³Π΅ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ Π½Π΅ обнаруТивался. Π’ ΠΎΡΡ‚Π°Π»ΡŒΠ½Ρ‹Ρ… исслСдуСмых тканях Ρ€ΠΈΡ„Π°Π±ΡƒΡ‚ΠΈΠ½ опрСдСлялся ΡƒΠΆΠ΅ Ρ‡Π΅Ρ€Π΅Π· 10Β ΠΌΠΈΠ½ послС ввСдСния, Π° максимальная концСнтрация ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π° Π΄ΠΎΡΡ‚ΠΈΠ³Π°Π»Π°ΡΡŒ Π² ΠΎΡ€Π³Π°Π½Π°Ρ… спустя 1,5–3,5Β Ρ‡. ΠšΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ Ρ€ΠΈΡ„Π°Π±ΡƒΡ‚ΠΈΠ½Π°, опрСдСляСмыС Π² Π»Π΅Π³ΠΊΠΈΡ…, оказались статистичСски Π·Π½Π°Ρ‡ΠΈΠΌΠΎ (pΒ 0,05) Π²Ρ‹ΡˆΠ΅ послС ввСдСния ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡ‹ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π°. ΠšΠΎΡΡ„Ρ„ΠΈΡ†ΠΈΠ΅Π½Ρ‚ распрСдСлСния ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡ‹ Π² ΠΏΠ΅Ρ‡Π΅Π½ΠΈ ΠΈ Π»Π΅Π³ΠΊΠΈΡ… Π±Ρ‹Π» ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ (15,83 ΠΈ 10,14Β ΠΌΠΊΠ³/Π³, соотвСтствСнно) ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с субстанциСй. МинимальноС количСство (0,02Β ΠΌΠΊΠ³/Π³) Π΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π³ΠΎ вСщСства наблюдали Π² сСрдцС. Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅: ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π²ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ Ρ€ΠΈΡ„Π°Π±ΡƒΡ‚ΠΈΠ½Π° Π² ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ измСняСт Π΅Π³ΠΎ Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΡŽ ΠΏΠΎ ΠΎΡ€Π³Π°Π½Π°ΠΌ ΠΈ тканям. УстановлСно ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½ΠΎΠ΅ Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΠ΅ Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†ΠΈΠΈ Ρ€ΠΈΡ„Π°Π±ΡƒΡ‚ΠΈΠ½Π° Π² Ρ‚ΠΊΠ°Π½ΠΈ Π»Π΅Π³ΠΊΠΈΡ…, ΠΏΠ΅Ρ‡Π΅Π½ΠΈ ΠΈ сСлСзСнки.

    First experimental results obtained using the highpower free electron laser at the siberian center for photochemical research

    No full text
    The first lasing near the wavelength of 140 Β΅m was achieved in April 2003 using a high-power free electron laser (FEL) constructed at the Siberian Center for Photochemical Research. In this paper we briefly describe the design of the FEL driven by an accelerator–recuperator. Characteristics of the electron beam and terahertz laser radiation, obtained in the first experiments, are also presented in the paper.Π£ Π‘ΠΈΠ±Ρ–Ρ€ΡΡŒΠΊΠΎΠΌΡƒ Ρ†Π΅Π½Ρ‚Ρ€Ρ– Ρ„ΠΎΡ‚ΠΎΡ…Ρ–ΠΌΡ–Ρ‡Π½ΠΈΡ… Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΡŒ навСсні 2003 Ρ€ΠΎΠΊΡƒ ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½Π° гСнСрація Π²ΠΈΠΏΡ€ΠΎΠΌΡ–Π½ΡŽΠ²Π°Π½Π½Ρ Π· довТиною Ρ…Π²ΠΈΠ»Ρ– 140 ΠΌΠΊΠΌ Π½Π° ΠΏΠΎΡ‚ΡƒΠΆΠ½ΠΎΠΌΡƒ Π»Π°Π·Π΅Ρ€Ρ– Π½Π° Π²Ρ–Π»ΡŒΠ½ΠΈΡ… Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π°Ρ… (Π›Π’Π•). Π£ Ρ€ΠΎΠ±ΠΎΡ‚Ρ– ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΎ описана конструкція Π›Π’Π• Π½Π° Π±Π°Π·Ρ– ΠΏΡ€ΠΈΡΠΊΠΎΡ€ΡŽΠ²Π°Ρ‡Π° Ρ€Π΅ΠΊΡƒΠΏΠ΅Ρ€Π°Ρ‚ΠΎΡ€Π° Ρ– прСдставлСні Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ Π²ΠΈΠΌΡ–Ρ€ΡŽΠ²Π°Π½Π½Ρ дСяких ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ–Π² Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΡƒΡ‡ΠΊΠ° Ρ– Ρ‚Π΅Ρ€Π°Π³Π΅Ρ€Ρ†ΠΎΠ²ΠΎΠ³ΠΎ Π²ΠΈΠΏΡ€ΠΎΠΌΡ–Π½ΡŽΠ²Π°Π½Π½Ρ.Π’ Бибирском Ρ†Π΅Π½Ρ‚Ρ€Π΅ фотохимичСских исслСдований вСсной 2003 Π³ΠΎΠ΄Π° ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π° гСнСрация излучСния с Π΄Π»ΠΈΠ½ΠΎΠΉ Π²ΠΎΠ»Π½Ρ‹ 140 ΠΌΠΊΠΌ Π½Π° ΠΌΠΎΡ‰Π½ΠΎΠΌ Π»Π°Π·Π΅Ρ€Π΅ Π½Π° свободных элСктронах (Π›Π‘Π­). Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ ΠΊΡ€Π°Ρ‚ΠΊΠΎ описана конструкция Π›Π‘Π­ Π½Π° Π±Π°Π·Π΅ ускоритСля Ρ€Π΅ΠΊΡƒΠΏΠ΅Ρ€Π°Ρ‚ΠΎΡ€Π° ΠΈ прСдставлСны Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ измСрСния Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² элСктронного ΠΏΡƒΡ‡ΠΊΠ° ΠΈ Ρ‚Π΅Ρ€Π°Π³Π΅Ρ€Ρ†ΠΎΠ²ΠΎΠ³ΠΎ излучСния

    DIGITAL-ЀОРМАВЫ КАК Π‘ΠŸΠžΠ‘ΠžΠ‘ ΠŸΠ ΠžΠ”Π’Π˜Π–Π•ΠΠ˜Π― ΠΠ’Π’ΠžΠœΠžΠ‘Π˜Π›Π•Π™ Π’ ΠŸΠ•Π Π˜ΠžΠ” ΠŸΠΠΠ”Π•ΠœΠ˜Π˜

    No full text
    The rapid development of new digital and visual technologies is leading to fundamental changes in the field of marketing. Modern car brands that seek to multiply and maintain their established positions in the global car market often face extensive changes in the external environment. The pandemic has affected the way cars are promoted in a total lockdown environment.БыстроС Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ Π½ΠΎΠ²Ρ‹Ρ… Ρ†ΠΈΡ„Ρ€ΠΎΠ²Ρ‹Ρ… ΠΈ Π²ΠΈΠ·ΡƒΠ°Π»ΡŒΠ½Ρ‹Ρ… Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹ΠΌ измСнСниям Π² области ΠΌΠ°Ρ€ΠΊΠ΅Ρ‚ΠΈΠ½Π³Π°. Π‘ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Π΅ Π°Π²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»ΡŒΠ½Ρ‹Π΅ Π±Ρ€Π΅Π½Π΄Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ стрСмятся ΠΏΡ€ΠΈΡƒΠΌΠ½ΠΎΠΆΠΈΡ‚ΡŒ ΠΈ ΡΠΎΡ…Ρ€Π°Π½ΠΈΡ‚ΡŒ свои ΡΡ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π²ΡˆΠΈΠ΅ΡΡ ΠΏΠΎΠ·ΠΈΡ†ΠΈΠΈ Π½Π° ΠΌΠΈΡ€ΠΎΠ²ΠΎΠΌ Ρ€Ρ‹Π½ΠΊΠ΅ Π°Π²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»Π΅ΠΉ, Π·Π°Ρ‡Π°ΡΡ‚ΡƒΡŽ ΡΡ‚Π°Π»ΠΊΠΈΠ²Π°ΡŽΡ‚ΡΡ с многочислСнными измСнСниями Π²ΠΎ внСшнСй срСдС. ПандСмия повлияла Π½Π° способы продвиТСния Π°Π²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»Π΅ΠΉ Π² условиях Ρ‚ΠΎΡ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π»ΠΎΠΊΠ΄Π°ΡƒΠ½Π°

    Development and validation of atazanavir and ritonavir determination in human plasma by HPLC-MS method

    No full text
    Introduction. HIV infection is one of the most relevant diseases from a medical, epidemiological and social point of view. Timely diagnosis, detection and control of the disease, adequate prescription of antiretroviral therapy can sufficiently reduce the viral load on the patient's body, reduce the risk of transmission of infection. Currently, combinations of various antiretroviral drugs are increasingly being prescribed as therapy. One of the most important is combination of atazanavir and ritonavir. The most important stage for the study of pharmacokinetics, studies of comparative pharmacokinetics and bioequivalence is the development of an analytical method that allows you to determine the investigated substances in human plasma. There are currently no published methods for the determination of atazanavir and ritonavir in human plasma using high performance liquid chromatography with mass selective detection using a single quadrupole mass detector. In this article presents the development and validation of a method for the determination of atazanavir and ritonavir in blood plasma after sample preparation by the method of protein precipitation. Aim. The aim of the study is to develop a method for the quantitative determination of atazanavir and ritonavir in human plasma by HPLC with mass spectrometric detection for performing the analytical part of pharmacokinetic studies. Materials and methods. Determination of atazanavir and ritonavir in human plasma by HPLC with mass spectrometric detection. A sample was prepared using protein deposition. Results and discussion. The method was validated of selectivity, matrix effect, calibration curve, accuracy, precision, limit of quantification, carry-over effect and sample stability. Conclusion. The method of the determination of atazanavir and ritonavir in human plasma was developed and validated by HPLC-MS. The analytical range of the was 50.0–10000.0 ng/mL in plasma for atazanavir and 10.0–2500.0 ng/mL in plasma for ritonavir. Method could be applied to determination of atazanavir and ritonavir in plasma for PK and BE studies. Β© Komarov T. N., Shohin I. E., Miskiv O. A., Bogdanova D. S., Aleshina A. V., Medvedev Yu. V., Bagaeva N. S., 2020

    Alakit and Daldyn kimberlite fields, Siberia, Russia: Two types ofΒ mantle sub-terranes beneath central Yakutia?

    Get PDF
    Mineral data from Yakutian kimberlites allow reconstruction of the history of lithospheric mantle. Differences occur in compositions of mantle pyropes and clinopyroxenes from large kimberlite pipes in the Alakit and Daldyn fields. In the Alakit field, Cr-diopsides are alkaline, and Stykanskaya and some other pipes contain more sub-calcic pyropes and dunitic-type diamond inclusions, while in the Daldyn field harzburgitic pyropes are frequent. The eclogitic diamond inclusions in the Alakit field are sharply divided in types and conditions, while in the Daldyn field they show varying compositions and often continuous Pressure–Temperature (P–T) ranges with increasing Fe# with decreasing pressures. In Alakit, Cr-pargasites to richterites were found in all pipes, while in Daldyn, pargasites are rare Dalnyaya and Zarnitsa pipes. Cr-diopsides from the Alakit region show higher levels of light Rare Earth Elements (LREE) and stronger REE-slopes, and enrichment in light Rare Earth Elements (LREE), sometimes Th-U, and small troughs in Nb-Ta-Zr. In the Daldyn field, the High Field Strength Elements HFSE troughs are more common in clinopyroxenes with low REE abundances, while those from sheared and refertilized peridotites have smooth patterns. Garnets from Alakit show HREE minima, but those from Daldyn often have a trough at Y and high U and Pb. PTXfO2 diagrams from both regions show similarities, suggesting similar layering and structures. The degree of metasomatism is often higher for pipes which show dispersion in P–Fe# trends for garnets. In the mantle beneath Udachnaya and Aykhal, pipes show 6–7 linear arrays of P–Fe# in the lower part of the mantle section at 7.5–3.0Β GPa, probably reflecting primary subduction horizons. Beneath the Sytykanskaya pipe, there are several horizons with opposite inclinations which reflect metasomatic processes. The high dispersion of the P–Fe# trend indicating widespread metasomatism is associated with decreased diamond grades. Possible explanation of the differences in mineralogy and geochemistry of the mantle sections may relate to their tectonic positions during growth of the lithospheric keel. Enrichment in volatiles and alkalis possibly corresponds to interaction with subduction-related fluids and melts in the craton margins. Incorporation of island arc peridotites from an eroded arc is a possible scenario
    corecore