38 research outputs found
ΠΠΠΠ ΠΠ‘ΠΠ ΠΠΠΠΠΠΠΠ ΠΠΠΠΠΠΠ ΠΠΠ Π’Π ΠΠΠ‘ΠΠΠ Π’ΠΠΠ Π€ΠΠ ΠΠ« Π ΠΠ€ΠΠΠ£Π’ΠΠΠ
Background: One way to increase drug efficacy is to provide a drug delivery transport system to the target organ. A widely used method is to incorporate the drug in a biodegradable polymer composition with forming nanosized drugβs transport forms. Objective: Our aim was to investigate the tissue biodistribution of antibiotic rifabutin transport system based on lactic and glycolic acids copolymer, and to compare it with the pure substance of rifabutin. Methods: These substances were administered to two groups of rats intragastrically in the doses of 10Β mg/kg. After a certain period of time, the animals were sacrificed by cervical dislocation. Samples preparation for analysis was carried out of the liquid-liquid extraction. Active substanceβs concentrations were measured by high performance liquid chromatography method. Results: The study included 8-week-aged Wistar rats of both sexes weighing 0.22Β±0.02 kg. Animals were divided into 2 groups. The study group received polymer form of antibiotic, and the comparison group received substance of rifabutin. In intervals of 10 min, 30 min, 1 h, 2 h, 4 h, 7 h, 15 h, 24 h after drug administration liver, lung, spleen, kidney, intestines, stomach, heart and brain were resected respectively. Organs were measured by their weight. The drug was not detected in the brain. Rifabutin was determined in other examined tissues within 10 minutes and the maximum drug concentration in organs was fixed in 1.5β3.5 hours after administration. The rifabutin concentrations defined in the lungs were significantly higher in polymer form (pΒ 0.05). The polymer formβs distribution coefficient was higher in the liver and lungs (15.83 and 10.14Β ΞΌg/g respectively) in comparison with the substance one. The minimum amount of the active ingredient was observed in the heart (0.02Β ΞΌg/g). Conclusion: It is shown that the inclusion of the drug in a polymeric form substantially alters its localization in organs and tissues. Extensive biodistribution nanorifabutin in lung tissue, liver and spleen is established.Β Β ΠΠ΄Π½ΠΈΠΌ ΠΈΠ· Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΉ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΡ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ Π»Π΅ΠΊΠ°ΡΡΡΠ²Π΅Π½Π½ΡΡ
ΡΡΠ΅Π΄ΡΡΠ² ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠΎΠ·Π΄Π°Π½ΠΈΠ΅ ΡΡΠ°Π½ΡΠΏΠΎΡΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ Π΄ΠΎΡΡΠ°Π²ΠΊΠΈ Π»Π΅ΠΊΠ°ΡΡΡΠ² Π² ΡΠ΅Π»Π΅Π²ΠΎΠΉ ΠΎΡΠ³Π°Π½. Π¨ΠΈΡΠΎΠΊΠΎ ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½Π΅Π½Π½ΡΠΉ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ β Π²ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ Π»Π΅ΠΊΠ°ΡΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ Π²Π΅ΡΠ΅ΡΡΠ²Π° Π² ΡΠΎΡΡΠ°Π² Π±ΠΈΠΎΠ΄Π΅Π³ΡΠ°Π΄ΠΈΡΡΠ΅ΠΌΠΎΠ³ΠΎ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ° Ρ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π½Π°Π½ΠΎΡΠ°Π·ΠΌΠ΅ΡΠ½ΠΎΠΉ ΡΡΠ°Π½ΡΠΏΠΎΡΡΠ½ΠΎΠΉ ΡΠΎΡΠΌΡ Π»Π΅ΠΊΠ°ΡΡΡΠ²Π°. Π¦Π΅Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ: ΠΈΠ·ΡΡΠΈΡΡ Π±ΠΈΠΎΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎ ΡΠΊΠ°Π½ΡΠΌ ΡΡΠ°Π½ΡΠΏΠΎΡΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ Π°Π½ΡΠΈΠ±ΠΈΠΎΡΠΈΠΊΠ° ΡΠΈΡΠ°Π±ΡΡΠΈΠ½Π° Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΠΎΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ° ΠΌΠΎΠ»ΠΎΡΠ½ΠΎΠΉ ΠΈ Π³Π»ΠΈΠΊΠΎΠ»Π΅Π²ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΡ, Π° ΡΠ°ΠΊΠΆΠ΅ ΡΡΠ°Π²Π½ΠΈΡΡ Π΅Π΅ Ρ ΡΠΈΡΡΠΎΠΉ ΡΡΠ±ΡΡΠ°Π½ΡΠΈΠ΅ΠΉ ΡΠΈΡΠ°Π±ΡΡΠΈΠ½Π°. ΠΠ΅ΡΠΎΠ΄Ρ: ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΡ Π²Π²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΏΠ΅ΡΠΎΡΠ°Π»ΡΠ½ΠΎ, ΡΠ΅ΡΠ΅Π· Π°ΡΡΠ°Π²ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΌΠ΅ΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΈΠΉ Π·ΠΎΠ½Π΄ Π² Π΄ΠΎΠ·Π΅ 10Β ΠΌΠ³/ΠΊΠ³. ΠΠ°Π»Π΅Π΅ ΡΠ΅ΡΠ΅Π· ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΠ΅ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΡ
ΠΆΠΈΠ²ΠΎΡΠ½ΡΡ
ΡΠΌΠ΅ΡΡΠ²Π»ΡΠ»ΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Π΄ΠΈΡΠ»ΠΎΠΊΠ°ΡΠΈΠΈ ΡΠ΅ΠΉΠ½ΡΡ
ΠΏΠΎΠ·Π²ΠΎΠ½ΠΊΠΎΠ². ΠΡΠΎΠ±ΠΎΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠ° ΠΎΡΠ³Π°Π½ΠΎΠ² ΠΊ Π°Π½Π°Π»ΠΈΠ·Ρ ΠΎΡΡΡΠ΅ΡΡΠ²Π»ΡΠ»Π°ΡΡ ΠΆΠΈΠ΄ΠΊΠΎΡΡΡ-ΠΆΠΈΠ΄ΠΊΠΎΡΡΠ½ΠΎΠΉ ΡΠΊΡΡΡΠ°ΠΊΡΠΈΠ΅ΠΉ. ΠΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΡ Π΄Π΅ΠΉΡΡΠ²ΡΡΡΠ΅Π³ΠΎ Π²Π΅ΡΠ΅ΡΡΠ²Π° ΠΈΠ·ΠΌΠ΅ΡΡΠ»ΠΈ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΌΠ΅ΡΠΎΠ΄Π° Π²ΡΡΠΎΠΊΠΎΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠΉ ΠΆΠΈΠ΄ΠΊΠΎΡΡΠ½ΠΎΠΉ Ρ
ΡΠΎΠΌΠ°ΡΠΎΠ³ΡΠ°ΡΠΈΠΈ. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ: Π² ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π²ΠΊΠ»ΡΡΠ°Π»ΠΈ Π²ΠΎΡΡΠΌΠΈΠ½Π΅Π΄Π΅Π»ΡΠ½ΡΡ
ΠΊΡΡΡ Π»ΠΈΠ½ΠΈΠΈ Wistar ΠΎΠ±ΠΎΠ΅Π³ΠΎ ΠΏΠΎΠ»Π° ΠΌΠ°ΡΡΠΎΠΉ 0,22Β±0,02Β ΠΊΠ³. ΠΠΈΠ²ΠΎΡΠ½ΡΠ΅ Π±ΡΠ»ΠΈ ΡΠ°Π·Π΄Π΅Π»Π΅Π½Ρ Π½Π° 2 Π³ΡΡΠΏΠΏΡ. ΠΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΠ°Ρ Π³ΡΡΠΏΠΏΠ° ΠΏΠΎΠ»ΡΡΠ°Π»Π° Π°Π½ΡΠΈΠ±ΠΈΠΎΡΠΈΠΊ Π² ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ½ΠΎΠΉ ΡΠΎΡΠΌΠ΅, Π° Π³ΡΡΠΏΠΏΠ° ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΏΠΎΠ»ΡΡΠ°Π»Π° ΡΡΠ±ΡΡΠ°Π½ΡΠΈΡ ΡΠΈΡΠ°Π±ΡΡΠΈΠ½Π°. Π§Π΅ΡΠ΅Π· Π²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠ΅ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Ρ 10Β ΠΌΠΈΠ½, 30Β ΠΌΠΈΠ½, 1Β Ρ, 2Β Ρ, 4Β Ρ, 7Β Ρ, 15Β Ρ, 24Β Ρ ΠΏΠΎΡΠ»Π΅ Π²Π²Π΅Π΄Π΅Π½ΠΈΡ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠ° ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠ»ΠΈ ΡΠ΅Π·Π΅ΠΊΡΠΈΡ ΠΏΠ΅ΡΠ΅Π½ΠΈ, Π»Π΅Π³ΠΊΠΈΡ
, ΡΠ΅Π»Π΅Π·Π΅Π½ΠΊΠΈ, ΠΏΠΎΡΠ΅ΠΊ, ΠΊΠΈΡΠ΅ΡΠ½ΠΈΠΊΠ°, ΠΆΠ΅Π»ΡΠ΄ΠΊΠ°, ΡΠ΅ΡΠ΄ΡΠ° ΠΈ ΠΌΠΎΠ·Π³Π°, ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ, ΠΈ ΠΈΠ·ΠΌΠ΅ΡΡΠ»ΠΈ ΠΈΡ
ΠΌΠ°ΡΡΡ. Π ΠΌΠΎΠ·Π³Π΅ ΠΏΡΠ΅ΠΏΠ°ΡΠ°Ρ Π½Π΅ ΠΎΠ±Π½Π°ΡΡΠΆΠΈΠ²Π°Π»ΡΡ. Π ΠΎΡΡΠ°Π»ΡΠ½ΡΡ
ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΡΡ
ΡΠΊΠ°Π½ΡΡ
ΡΠΈΡΠ°Π±ΡΡΠΈΠ½ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ»ΡΡ ΡΠΆΠ΅ ΡΠ΅ΡΠ΅Π· 10Β ΠΌΠΈΠ½ ΠΏΠΎΡΠ»Π΅ Π²Π²Π΅Π΄Π΅Π½ΠΈΡ, Π° ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½Π°Ρ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΡ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠ° Π΄ΠΎΡΡΠΈΠ³Π°Π»Π°ΡΡ Π² ΠΎΡΠ³Π°Π½Π°Ρ
ΡΠΏΡΡΡΡ 1,5β3,5Β Ρ. ΠΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ ΡΠΈΡΠ°Π±ΡΡΠΈΠ½Π°, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΠΌΡΠ΅ Π² Π»Π΅Π³ΠΊΠΈΡ
, ΠΎΠΊΠ°Π·Π°Π»ΠΈΡΡ ΡΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈ Π·Π½Π°ΡΠΈΠΌΠΎ (pΒ 0,05) Π²ΡΡΠ΅ ΠΏΠΎΡΠ»Π΅ Π²Π²Π΅Π΄Π΅Π½ΠΈΡ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ½ΠΎΠΉ ΡΠΎΡΠΌΡ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠ°. ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ½ΠΎΠΉ ΡΠΎΡΠΌΡ Π² ΠΏΠ΅ΡΠ΅Π½ΠΈ ΠΈ Π»Π΅Π³ΠΊΠΈΡ
Π±ΡΠ» ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΡΠΌ (15,83 ΠΈ 10,14Β ΠΌΠΊΠ³/Π³, ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ) ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ ΡΡΠ±ΡΡΠ°Π½ΡΠΈΠ΅ΠΉ. ΠΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ (0,02Β ΠΌΠΊΠ³/Π³) Π΄Π΅ΠΉΡΡΠ²ΡΡΡΠ΅Π³ΠΎ Π²Π΅ΡΠ΅ΡΡΠ²Π° Π½Π°Π±Π»ΡΠ΄Π°Π»ΠΈ Π² ΡΠ΅ΡΠ΄ΡΠ΅. ΠΠ°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅: ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π²ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΡΠΈΡΠ°Π±ΡΡΠΈΠ½Π° Π² ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ½ΡΡ ΡΠΎΡΠΌΡ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅Ρ Π΅Π³ΠΎ Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°ΡΠΈΡ ΠΏΠΎ ΠΎΡΠ³Π°Π½Π°ΠΌ ΠΈ ΡΠΊΠ°Π½ΡΠΌ. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ ΠΏΠΎΠ²ΡΡΠ΅Π½Π½ΠΎΠ΅ Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΠ΅ Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΈΠΈ ΡΠΈΡΠ°Π±ΡΡΠΈΠ½Π° Π² ΡΠΊΠ°Π½ΠΈ Π»Π΅Π³ΠΊΠΈΡ
, ΠΏΠ΅ΡΠ΅Π½ΠΈ ΠΈ ΡΠ΅Π»Π΅Π·Π΅Π½ΠΊΠΈ.
First experimental results obtained using the highpower free electron laser at the siberian center for photochemical research
The first lasing near the wavelength of 140 Β΅m was achieved in April 2003 using a high-power free electron laser (FEL) constructed at the Siberian Center for Photochemical Research. In this paper we briefly describe the design of the FEL driven by an acceleratorβrecuperator. Characteristics of the electron beam and terahertz laser radiation, obtained in the first experiments, are also presented in the paper.Π£ Π‘ΠΈΠ±ΡΡΡΡΠΊΠΎΠΌΡ ΡΠ΅Π½ΡΡΡ ΡΠΎΡΠΎΡ
ΡΠΌΡΡΠ½ΠΈΡ
Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Ρ Π½Π°Π²Π΅ΡΠ½Ρ 2003 ΡΠΎΠΊΡ ΠΎΡΡΠΈΠΌΠ°Π½Π° Π³Π΅Π½Π΅ΡΠ°ΡΡΡ Π²ΠΈΠΏΡΠΎΠΌΡΠ½ΡΠ²Π°Π½Π½Ρ Π· Π΄ΠΎΠ²ΠΆΠΈΠ½ΠΎΡ Ρ
Π²ΠΈΠ»Ρ 140 ΠΌΠΊΠΌ Π½Π° ΠΏΠΎΡΡΠΆΠ½ΠΎΠΌΡ Π»Π°Π·Π΅ΡΡ Π½Π° Π²ΡΠ»ΡΠ½ΠΈΡ
Π΅Π»Π΅ΠΊΡΡΠΎΠ½Π°Ρ
(ΠΠΠ). Π£ ΡΠΎΠ±ΠΎΡΡ ΠΊΠΎΡΠΎΡΠΊΠΎ ΠΎΠΏΠΈΡΠ°Π½Π° ΠΊΠΎΠ½ΡΡΡΡΠΊΡΡΡ ΠΠΠ Π½Π° Π±Π°Π·Ρ ΠΏΡΠΈΡΠΊΠΎΡΡΠ²Π°ΡΠ° ΡΠ΅ΠΊΡΠΏΠ΅ΡΠ°ΡΠΎΡΠ° Ρ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΈ Π²ΠΈΠΌΡΡΡΠ²Π°Π½Π½Ρ Π΄Π΅ΡΠΊΠΈΡ
ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡΠ² Π΅Π»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΡΡΠΊΠ° Ρ ΡΠ΅ΡΠ°Π³Π΅ΡΡΠΎΠ²ΠΎΠ³ΠΎ Π²ΠΈΠΏΡΠΎΠΌΡΠ½ΡΠ²Π°Π½Π½Ρ.Π Π‘ΠΈΠ±ΠΈΡΡΠΊΠΎΠΌ ΡΠ΅Π½ΡΡΠ΅ ΡΠΎΡΠΎΡ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ Π²Π΅ΡΠ½ΠΎΠΉ 2003 Π³ΠΎΠ΄Π° ΠΏΠΎΠ»ΡΡΠ΅Π½Π° Π³Π΅Π½Π΅ΡΠ°ΡΠΈΡ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ Ρ Π΄Π»ΠΈΠ½ΠΎΠΉ Π²ΠΎΠ»Π½Ρ 140 ΠΌΠΊΠΌ Π½Π° ΠΌΠΎΡΠ½ΠΎΠΌ Π»Π°Π·Π΅ΡΠ΅ Π½Π° ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΡΡ
ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π°Ρ
(ΠΠ‘Π). Π ΡΠ°Π±ΠΎΡΠ΅ ΠΊΡΠ°ΡΠΊΠΎ ΠΎΠΏΠΈΡΠ°Π½Π° ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΡ ΠΠ‘Π Π½Π° Π±Π°Π·Π΅ ΡΡΠΊΠΎΡΠΈΡΠ΅Π»Ρ ΡΠ΅ΠΊΡΠΏΠ΅ΡΠ°ΡΠΎΡΠ° ΠΈ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π½Π΅ΠΊΠΎΡΠΎΡΡΡ
ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΡΡΠΊΠ° ΠΈ ΡΠ΅ΡΠ°Π³Π΅ΡΡΠΎΠ²ΠΎΠ³ΠΎ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ
DIGITAL-Π€ΠΠ ΠΠΠ’Π« ΠΠΠ Π‘ΠΠΠ‘ΠΠ ΠΠ ΠΠΠΠΠΠΠΠΠ― ΠΠΠ’ΠΠΠΠΠΠΠΠ Π ΠΠΠ ΠΠΠ ΠΠΠΠΠΠΠΠ
The rapid development of new digital and visual technologies is leading to fundamental changes in the field of marketing. Modern car brands that seek to multiply and maintain their established positions in the global car market often face extensive changes in the external environment. The pandemic has affected the way cars are promoted in a total lockdown environment.ΠΡΡΡΡΠΎΠ΅ ΡΠ°Π·Π²ΠΈΡΠΈΠ΅ Π½ΠΎΠ²ΡΡ
ΡΠΈΡΡΠΎΠ²ΡΡ
ΠΈ Π²ΠΈΠ·ΡΠ°Π»ΡΠ½ΡΡ
ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΡΡΠ½Π΄Π°ΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠΌ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡΠΌ Π² ΠΎΠ±Π»Π°ΡΡΠΈ ΠΌΠ°ΡΠΊΠ΅ΡΠΈΠ½Π³Π°. Π‘ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠ΅ Π°Π²ΡΠΎΠΌΠΎΠ±ΠΈΠ»ΡΠ½ΡΠ΅ Π±ΡΠ΅Π½Π΄Ρ, ΠΊΠΎΡΠΎΡΡΠ΅ ΡΡΡΠ΅ΠΌΡΡΡΡ ΠΏΡΠΈΡΠΌΠ½ΠΎΠΆΠΈΡΡ ΠΈ ΡΠΎΡ
ΡΠ°Π½ΠΈΡΡ ΡΠ²ΠΎΠΈ ΡΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π²ΡΠΈΠ΅ΡΡ ΠΏΠΎΠ·ΠΈΡΠΈΠΈ Π½Π° ΠΌΠΈΡΠΎΠ²ΠΎΠΌ ΡΡΠ½ΠΊΠ΅ Π°Π²ΡΠΎΠΌΠΎΠ±ΠΈΠ»Π΅ΠΉ, Π·Π°ΡΠ°ΡΡΡΡ ΡΡΠ°Π»ΠΊΠΈΠ²Π°ΡΡΡΡ Ρ ΠΌΠ½ΠΎΠ³ΠΎΡΠΈΡΠ»Π΅Π½Π½ΡΠΌΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡΠΌΠΈ Π²ΠΎ Π²Π½Π΅ΡΠ½Π΅ΠΉ ΡΡΠ΅Π΄Π΅. ΠΠ°Π½Π΄Π΅ΠΌΠΈΡ ΠΏΠΎΠ²Π»ΠΈΡΠ»Π° Π½Π° ΡΠΏΠΎΡΠΎΠ±Ρ ΠΏΡΠΎΠ΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π°Π²ΡΠΎΠΌΠΎΠ±ΠΈΠ»Π΅ΠΉ Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ
ΡΠΎΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π»ΠΎΠΊΠ΄Π°ΡΠ½Π°
Development and validation of atazanavir and ritonavir determination in human plasma by HPLC-MS method
Introduction. HIV infection is one of the most relevant diseases from a medical, epidemiological and social point of view. Timely diagnosis, detection and control of the disease, adequate prescription of antiretroviral therapy can sufficiently reduce the viral load on the patient's body, reduce the risk of transmission of infection. Currently, combinations of various antiretroviral drugs are increasingly being prescribed as therapy. One of the most important is combination of atazanavir and ritonavir. The most important stage for the study of pharmacokinetics, studies of comparative pharmacokinetics and bioequivalence is the development of an analytical method that allows you to determine the investigated substances in human plasma. There are currently no published methods for the determination of atazanavir and ritonavir in human plasma using high performance liquid chromatography with mass selective detection using a single quadrupole mass detector. In this article presents the development and validation of a method for the determination of atazanavir and ritonavir in blood plasma after sample preparation by the method of protein precipitation. Aim. The aim of the study is to develop a method for the quantitative determination of atazanavir and ritonavir in human plasma by HPLC with mass spectrometric detection for performing the analytical part of pharmacokinetic studies. Materials and methods. Determination of atazanavir and ritonavir in human plasma by HPLC with mass spectrometric detection. A sample was prepared using protein deposition. Results and discussion. The method was validated of selectivity, matrix effect, calibration curve, accuracy, precision, limit of quantification, carry-over effect and sample stability. Conclusion. The method of the determination of atazanavir and ritonavir in human plasma was developed and validated by HPLC-MS. The analytical range of the was 50.0β10000.0 ng/mL in plasma for atazanavir and 10.0β2500.0 ng/mL in plasma for ritonavir. Method could be applied to determination of atazanavir and ritonavir in plasma for PK and BE studies. Β© Komarov T. N., Shohin I. E., Miskiv O. A., Bogdanova D. S., Aleshina A. V., Medvedev Yu. V., Bagaeva N. S., 2020
Alakit and Daldyn kimberlite fields, Siberia, Russia: Two types ofΒ mantle sub-terranes beneath central Yakutia?
Mineral data from Yakutian kimberlites allow reconstruction of the history of lithospheric mantle. Differences occur in compositions of mantle pyropes and clinopyroxenes from large kimberlite pipes in the Alakit and Daldyn fields. In the Alakit field, Cr-diopsides are alkaline, and Stykanskaya and some other pipes contain more sub-calcic pyropes and dunitic-type diamond inclusions, while in the Daldyn field harzburgitic pyropes are frequent. The eclogitic diamond inclusions in the Alakit field are sharply divided in types and conditions, while in the Daldyn field they show varying compositions and often continuous PressureβTemperature (PβT) ranges with increasing Fe# with decreasing pressures. In Alakit, Cr-pargasites to richterites were found in all pipes, while in Daldyn, pargasites are rare Dalnyaya and Zarnitsa pipes. Cr-diopsides from the Alakit region show higher levels of light Rare Earth Elements (LREE) and stronger REE-slopes, and enrichment in light Rare Earth Elements (LREE), sometimes Th-U, and small troughs in Nb-Ta-Zr. In the Daldyn field, the High Field Strength Elements HFSE troughs are more common in clinopyroxenes with low REE abundances, while those from sheared and refertilized peridotites have smooth patterns. Garnets from Alakit show HREE minima, but those from Daldyn often have a trough at Y and high U and Pb. PTXfO2 diagrams from both regions show similarities, suggesting similar layering and structures. The degree of metasomatism is often higher for pipes which show dispersion in PβFe# trends for garnets. In the mantle beneath Udachnaya and Aykhal, pipes show 6β7 linear arrays of PβFe# in the lower part of the mantle section at 7.5β3.0Β GPa, probably reflecting primary subduction horizons. Beneath the Sytykanskaya pipe, there are several horizons with opposite inclinations which reflect metasomatic processes. The high dispersion of the PβFe# trend indicating widespread metasomatism is associated with decreased diamond grades. Possible explanation of the differences in mineralogy and geochemistry of the mantle sections may relate to their tectonic positions during growth of the lithospheric keel. Enrichment in volatiles and alkalis possibly corresponds to interaction with subduction-related fluids and melts in the craton margins. Incorporation of island arc peridotites from an eroded arc is a possible scenario