77 research outputs found
Atomic data for astrophysics: improved collision strengths for Fe VIII
We describe, and present the results of, a new large-scale R-matrix scattering calculation for the electron collisional excitation of Fe viii. We first discuss the limitations of the previous calculations, in particular concerning some strong EUV lines observed in the solar corona by the Hinode EUV Imaging Spectrometer. We then present a new target which represents an improvement over the previous ones for this particularly complex ion. We developed a new method, based on the use of term energy corrections within the intermediate coupling frame transformation method, to calculate the collision strengths. We compare predicted and observed line intensities using laboratory and solar spectra, finding excellent agreement for all the main soft X-ray and extreme ultraviolet (EUV) transitions, using the present atomic data. In particular, we show that Fe viii EUV lines observed by Hinode EIS can now be used to provide reliable electron temperatures for the solar corona
Benchmarking atomic data for astrophysics : Si III
We investigate the main spectral diagnostics for Si iii UV lines, which have been previously used to measure electron densities, temperatures, and to suggest that non-Maxwellian electron distributions might be present in the low transition region of the solar atmosphere. Previous atomic calculations and observations are reviewed. We benchmark the observations using a new large-scale R-matrix scattering calculation for electron collisional excitation of Si iii, carried out with the intermediate-coupling frame transformation (ICFT) method. We find generally good agreement between predicted and observed line intensities, if one takes into account the different temperature sensitivity of the lines, and the structure of the solar transition region. We find no conclusive evidence for the presence of non-Maxwellian electron distributions
Updated opacities from the opacity project
Using the code autostructure, extensive calculations of inner-shell atomic data have been made for the chemical elements He, C, N, O, Ne, Na, Mg, Al, Si, S, Ar, Ca, Cr, Mn, Fe and Ni. The results are used to obtain updated opacities from the Opacity Project (OP). A number of other improvements on earlier work have also been included. Rosseland-mean opacities from the OP are compared with those from OPAL. Differences of 5-10 per cent occur. The OP gives the 'Z-bump', at log(T) 5.2, to be shifted to slightly higher temperatures. The opacities from the OP, as functions of temperature and density, are smoother than those from OPAL. The accuracy of the integrations used to obtain mean opacities can depend on the frequency mesh used. Tests involving variation of the numbers of frequency points show that for typical chemical mixtures the OP integrations are numerically correct to within 0.1 per cent. The accuracy of the interpolations used to obtain mean opacities for any required values of temperature and density depends on the temperature-density meshes used. Extensive tests show that, for all cases of practical interest, the OP interpolations give results correct to better than 1 per cent. Prior to a number of recent investigations which have indicated a need for downward revisions in the solar abundances of oxygen and other elements, there was good agreement between properties of the Sun deduced from helioseismology and from stellar evolution models calculated using OPAL opacities. The revisions destroy that agreement. In a recent paper, Bahcall et al. argue that the agreement would be restored if opacities for the regions of the Sun with 2 × 106T 5 × 106 K (0.7-0.4 R) were larger than those given by OPAL by about 10 per cent. In the region concerned, the present results from the OP do not differ from those of OPAL by more than 2.5 per cent
Modeling of Photoionized Plasmas
In this paper I review the motivation and current status of modeling of
plasmas exposed to strong radiation fields, as it applies to the study of
cosmic X-ray sources. This includes some of the astrophysical issues which can
be addressed, the ingredients for the models, the current computational tools,
the limitations imposed by currently available atomic data, and the validity of
some of the standard assumptions. I will also discuss ideas for the future:
challenges associated with future missions, opportunities presented by improved
computers, and goals for atomic data collection.Comment: 17 pages, 8 figures, to appear in the proceedings of Xray2010,
Utrecht, the Netherlands, March 15-17 201
New Results on Standard Solar Models
We describe the current status of solar modelling and focus on the problems
originated with the introduction of solar abundance determinations with low CNO
abundance values. We use models computed with solar abundance compilations
obtained during the last decade, including the newest published abundances by
Asplund and collaborators. Results presented here make focus both on
helioseismic properties and the models as well as in the neutrino fluxes
predictions. We also discuss changes in radiative opacities to restore
agreement between helioseismology, solar models, and solar abundances and show
the effect of such modifications on solar neutrino fluxes.Comment: 9 pages. Review talk presented at "Synergies between solar and
stellar modelling", Rome, June 2009. To be published by Astrophysics and
Space Scienc
CLES, Code Liegeois d'Evolution Stellaire
Cles is an evolution code recently developed to produce stellar models
meeting the specific requirements of studies in asteroseismology. It offers the
users a lot of choices in the input physics they want in their models and its
versatility allows them to tailor the code to their needs and implement easily
new features. We describe the features implemented in the current version of
the code and the techniques used to solve the equations of stellar structure
and evolution. A brief account is given of the use of the program and of a
solar calibration realized with it.Comment: Comments: 8 pages, Astrophys. Space Sci. CoRoT-ESTA Volume, in the
pres
Stellar evolution and modelling stars
In this chapter I give an overall description of the structure and evolution
of stars of different masses, and review the main ingredients included in
state-of-the-art calculations aiming at reproducing observational features. I
give particular emphasis to processes where large uncertainties still exist as
they have strong impact on stellar properties derived from large compilations
of tracks and isochrones, and are therefore of fundamental importance in many
fields of astrophysics.Comment: Lecture presented at the IVth Azores International Advanced School in
Space Sciences on "Asteroseismology and Exoplanets: Listening to the Stars
and Searching for New Worlds" (arXiv:1709.00645), which took place in Horta,
Azores Islands, Portugal in July 201
Recent Advances in Modeling Stellar Interiors
Advances in stellar interior modeling are being driven by new data from
large-scale surveys and high-precision photometric and spectroscopic
observations. Here we focus on single stars in normal evolutionary phases; we
will not discuss the many advances in modeling star formation, interacting
binaries, supernovae, or neutron stars. We review briefly: 1) updates to input
physics of stellar models; 2) progress in two and three-dimensional evolution
and hydrodynamic models; 3) insights from oscillation data used to infer
stellar interior structure and validate model predictions (asteroseismology).
We close by highlighting a few outstanding problems, e.g., the driving
mechanisms for hybrid gamma Dor/delta Sct star pulsations, the cause of giant
eruptions seen in luminous blue variables such as eta Car and P Cyg, and the
solar abundance problem.Comment: Proceedings for invited talk at conference High Energy Density
Laboratory Astrophysics 2010, Caltech, March 2010, submitted for special
issue of Astrophysics and Space Science; 7 pages; 5 figure
A quantitative comparison of opacities calculated using the distorted-wave and R-matirx methods
peer reviewe
- …
