16 research outputs found

    Role of discoidin domain receptors 1 and 2 in human smooth muscle cell-mediated collagen remodeling: potential implications in atherosclerosis and lymphangioleiomyomatosis

    Get PDF
    Obstructive diseases of blood vessels and the lung are characterized by degradation and synthesis of new extracellular matrix (ECM) components. Regulated remodeling of the ECM in diseases such as atherosclerosis and lymphangioleiomyomatosis (LAM), both characterized by excessive accumulation of smooth muscle cells (SMCs), is thought to be controlled in part by cell surface receptors for specific ECM components. Discoidin domain receptors (DDR) 1 and 2 represent a family of tyrosine kinase collagen receptors that are activated by fibrillar collagens. To test the hypothesis that DDR may be involved in ECM remodeling by SMCs in vivo, we analyzed DDR expression by reverse transcriptase-polymerase chain reaction and immunohistochemistry and demonstrate that both DDR1 and DDR2 are up-regulated in nodules of LAM as compared to normal controls, and are expressed in lesions of atherosclerosis. In vitro, retroviral overexpression of DDR1 or DDR2 in human SMCs cultured on polymerized collagen gels leads to a reduction of collagen expression and induces matrix metalloproteinase (MMP) 1 at both mRNA and protein levels, but only DDR2 enhances MMP2 activation. Moreover, DDR2 overexpression increases SMC-mediated collagen and elastin degradation in vitro. Using laser microdissection, we extend our studies to the analysis of SMCs from LAM nodules where we observe higher MMP1 expression and MMP2 activation. Taken together, these data provide evidence for the potential roles of DDR1 and DDR2 in the regulation of collagen turnover mediated by SMCs in obstructive diseases of blood vessels and the lung

    Focal adhesion and actin dynamics: a place where kinases and proteases meet to promote invasion

    No full text
    Integrin-linked focal adhesion complexes provide the main sites of cell adhesion to extracellular matrix and associate with the actin cytoskeleton to control cell movement. Dynamic regulation of focal adhesions and reorganization of the associated actin cytoskeleton are crucial determinants of cell migration. There are important roles for tyrosine kinases, extracellular signal-regulated protein kinase/mitogen-activated protein kinase signalling, and intracellular and extracellular proteases during actin and adhesion modulation. Dysregulation of these is associated with tumour cell invasion. In this article, we discuss established roles for these signalling pathways, as well as the functional interplay between them in controlling the migratory phenotype

    Calpain: a role in cell transformation and migration

    No full text
    Calpains represent a well conserved family of calcium-dependent proteolytic enzymes. Recent progress in determining the three-dimensional crystal structure of calpains and generation of calpain knock out animals have significantly advanced our understanding of both the activation mechanism and physiological role of this protease family. Studies applying molecular intervention strategies and genetic ablation of calpain now provide indisputable evidence that calpain activity contributes to remodelling of the actin cytoskeleton, cell migration and oncogenic transformation. Src and epidermal growth factor receptor (EGFR) stimulated cell motility is dependent upon calpain activation. In addition, calpain promotes accelerated cell-cycle progression and anchorage-independent growth of Src transformed cells. In vivo studies demonstrate a link between calpain expression levels and activity with tumour development and invasion. Thus, recent investigations suggest that the role of calpain in promoting cell transformation and cell migration may have important in vivo consequences in the context of cancer pathobiology

    Cleavage of focal adhesion kinase by different proteases during Src-reguIated transformation and apoptosis - Distinct roles for calpain and caspases

    No full text
    ntegrin-associated focal adhesion complexes provide the main adhesive links between the cellular actin cytoskeleton and the surrounding extracellular matrix. In vitro, cells utilize a complex temporal and spatially regulated mechanism of focal adhesion assembly and disassembly required for cell migration. Recent studies indicate that members of both calpain and caspase protease families can promote limited proteolytic cleavage of several components of focal adhesions leading to disassembly of these complexes. Such mechanisms that influence cell adhesion may be deregulated under pathological conditions characterized by increased cell motility, such as tumor invasion. v-Src-induced oncogenic transformation is associated with loss of focal adhesion structures and transition to a less adherent, more motile phenotype, while inactivating temperature-sensitive v-Src in serum-deprived transformed cells leads to detachment and apoptosis. In this report, we demonstrate that v-Src-induced disassembly of focal adhesions is accompanied by calpain-dependent proteolysis of focal adhesion kinase. Furthermore, inhibitors of calpain repress v-Src-induced focal adhesion disruption, loss of substrate adhesion, and cell migration. In contrast, focal adhesion loss during detachment and apoptosis induced after switching off temperature-sensitive v-Src in serum-deprived transformed cells is accompanied by caspase-mediated proteolysis of focal adhesion kinase. Thus, calpain and caspase differentially regulate focal adhesion turnover during Src-regulated cell transformation, motility, and apoptosis

    V-SRC'S hold over actin and cell adhesions

    No full text
    The oncoprotein v-Src and its cellular homologue (c-Src) are tyrosine kinases that modulate the actin cytoskeleton and cell adhesions. Through the concerted action of their protein-interaction and kinase domains, they are targeted to cell–matrix integrin adhesions or cadherin-dependent junctions between epithelial cells, where they phosphorylate substrates that induce adhesion turnover and actin re-modelling. Recent experiments have defined some of the key targets and effector pathways that mediate the pleiotropic oncogenic effects of v-Src

    v-Src-induced modulation of the calpain-calpastatin proteolytic system regulates transformation

    No full text
    v-Src-induced oncogenic transformation is characterized by alterations in cell morphology, adhesion, motility, survival, and proliferation. To further elucidate some of the signaling pathways downstream of v-Src that are responsible for the transformed cell phenotype, we have investigated the role that the calpain-calpastatin proteolytic system plays during oncogenic transformation induced by v-Src. We recently reported that v-Src-induced transformation of chicken embryo fibroblasts is accompanied by calpain-mediated proteolytic cleavage of the focal adhesion kinase (FAK) and disassembly of the focal adhesion complex. In this study we have characterized a positive feedback loop whereby activation of v-Src increases protein synthesis of calpain II, resulting in degradation of its endogenous inhibitor calpastatin. Reconstitution of calpastatin levels by overexpression of exogenous calpastatin suppresses proteolytic cleavage of FAK, morphological transformation, and anchorage-independent growth. Furthermore, calpastatin overexpression represses progression of v-Src-transformed cells through the G(1) stage of the cell cycle, which correlates with decreased pRb phosphorylation and decreased levels of cyclins A and D and cyclin-dependent kinase 2. Calpain 4 knockout fibroblasts also exhibit impaired v-Src-induced morphological transformation and anchorage-independent growth. Thus, modulation of the calpain-calpastatin proteolytic system plays an important role in focal adhesion disassembly, morphological transformation, and cell cycle progression during v-Src-induced cell transformation

    Calpain activity is generally elevated during transformation but has oncogene-specific biological functions

    No full text
    Several oncogene and tumor-suppressor gene products are known substrates for the calpain family of cysteine proteases, and calpain is required for transformation by v-src and tumor invasion. Thus, we have now addressed whether calpain is generally associated with transformation and how calpain contributes to oncogene function. Our results demonstrate that calpain activity is enhanced upon transformation induced by the v-Src, v-Jun, v-Myc, k-Ras, and v-Fos oncoproteins. Furthermore, elevated calpain activity commonly promotes focal adhesion remodelling, disruption of actin cytoskeleton, morphological transformation, and cell migration, although proteolysis of target substrates (such as focal adhesion kinase, talin, and spectrin) is differently specified by individual oncoproteins. Interestingly, v-Fos differs from other common oncoproteins in not requiring calpain activity for actin/adhesion remodelling or migration of v-Fos transformed cells. However, anchorage-independent growth of all transformed cells is sensitive to calpain inhibition. In addition, elevated calpain activity contributes to oncogene-induced apoptosis associated with transformation by v-Myc. Taken together, these studies demonstrate that calpain activity is necessary for full cellular transformation induced by common oncoproteins, but has distinct roles in oncogenic events induced by individual transforming proteins. Thus, targeting calpain activity may represent a useful general strategy for interfering with activated proto-oncogenes in cancer cells
    corecore