42 research outputs found

    Registration of atmospheric neutrinos with the Baikal neutrino telescope

    Full text link
    We present first neutrino induced events observed with a deep underwater neutrino telescope. Data from 70 days effective life time of the BAIKAL prototype telescope NT-96 have been analyzed with two different methods. With the standard track reconstruction method, 9 clear upward muon candidates have been identified, in good agreement with 8.7 events expected from Monte Carlo calculations for atmospheric neutrinos. The second analysis is tailored to muons coming from close to the opposite zenith. It yields 4 events, compared to 3.5 from Monte Carlo expectations. From this we derive a 90 % upper flux limit of 1.1 * 10^-13 cm^-2 sec^-1 for muons in excess of those expected from atmospheric neutrinos with zenith angle > 150 degrees and energy > 10GeV.Comment: 20 pages, 11 figure

    The Baikal Deep Underwater Neutrino Experiment: Results, Status, Future

    Full text link
    We review the present status of the Baikal Underwater Neutrino Experiment and present results obtained with the various stages of the stepwise increasing detector: NT-36 (1993-95), NT-72 (1995-96) and NT-96 (1996-97). Results cover atmospheric muons, first clear neutrino events, search for neutrinos from WIMP annihilation in the center of the Earth, search for magnetic monopoles, and -- far from astroparticle physics -- limnology.Comment: Talk given at the Int. School on Nuclear Physics, Erice, Sept.199

    TeV J2032+4130 - very high energy gamma-ray source of unresolved nature

    Get PDF
    The Cygnus Region is one of the brightest regions in all ranges of the electromagnetic spectrum and contains a number of potential GeV and TeV emission sources. It includes active star formation regions, pulsars and supernova remnants. Some of the sources have been detected at high and very high energies. One of them discovered due to its proximity to the well-known microquasar Cyg X-3 is the object TeV J2032+4130. This object is still of unresolved nature and is being intensively studied in different energy ranges. The results of twenty-year observations of TeV J2032+4130 by the SHALON experiment are presented in this paper. The collected experimental data on fluxes, spectrum shape and morphology of TeV J2032+413 can help in the future to determine an object type and reveal mechanisms of generation of very high energy emission

    TeV J2032+4130 - very high energy gamma-ray source of unresolved nature

    No full text
    The Cygnus Region is one of the brightest regions in all ranges of the electromagnetic spectrum and contains a number of potential GeV and TeV emission sources. It includes active star formation regions, pulsars and supernova remnants. Some of the sources have been detected at high and very high energies. One of them discovered due to its proximity to the well-known microquasar Cyg X-3 is the object TeV J2032+4130. This object is still of unresolved nature and is being intensively studied in different energy ranges. The results of twenty-year observations of TeV J2032+4130 by the SHALON experiment are presented in this paper. The collected experimental data on fluxes, spectrum shape and morphology of TeV J2032+413 can help in the future to determine an object type and reveal mechanisms of generation of very high energy emission

    Shell-type SNRs as sources of cosmic rays

    No full text
    Investigations of VHE gamma-ray sources by any methods, including mirror Cherenkov telescopes, touch on the problem of the cosmic ray origin and, accordingly, the role of the Galaxy in their generation. SHALON observations have yielded results on Galactic supernova remnants (SNR) of different ages. Among them are: the shell-type SNRs Tycho's SNR (1572y), Cas A (1680y), IC 443 (age ∼ (3 ÷ 30) × 103 y), Cygni SNR (age ∼ (5 ÷ 7) × 103 y), G166.0 + 4.3 (age ∼ 24 × 103 y) and the classical nova GK Per (Nova 1901). Observation results are presented for each of the SNRs with spectral energy distributions by SHALON in comparison with other experiment data and images by SHALON together with data from X-rays by Chandra and radio-data by CGPS. The collected experimental data have confirmed the prediction of the theory about the hadronic generation mechanism of very high energy 800 GeV–100 TeV gamma-rays in Tycho's SNR, Cas A and IC443. For the first time, unique data on GK Per (Nova1901) TeV gamma-ray emission were obtained with the SHALON experiment. The X-ray data shows that the nova remnant of GK Per could be a younger remnant that will resemble older SNRs like IC 443 which interact with molecular clouds. GK Per is supposed to be a candidate for TeV gamma-ray emission due to accelerated particles in the reverse shock region

    Very high energy emission sources beyond the Galaxy

    No full text
    Active Galactic Nuclei (AGN) are considered as potential extragalactic sources of very and ultra high energy cosmic rays. According to theoretical predictions cosmic ray acceleration can take place at the shock created by the expanding cocoons around active galactic nuclei as well as at AGN jets. The measurements of AGN TeV spectra, the variability time scale of TeV emission can provide essential information on the dynamics of AGN jets, the localization of acceleration region and an estimation of its size. SHALON observations yielded data on extragalactic sources of different AGN types in the energy range of 800 GeV–100 TeV. The data from SHALON observations are compared with those from other experiments at high and very high energies
    corecore