53 research outputs found

    B(E1) Strengths from Coulomb Excitation of 11Be

    Get PDF
    The BB(E1;1/2+1/21/2^+\to1/2^-) strength for 11^{11}Be has been extracted from intermediate energy Coulomb excitation measurements, over a range of beam energies using a new reaction model, the extended continuum discretized coupled channels (XCDCC) method. In addition, a measurement of the excitation cross section for 11^{11}Be+208^{208}Pb at 38.6 MeV/nucleon is reported. The BB(E1) strength of 0.105(12) e2^2fm2^2 derived from this measurement is consistent with those made previously at 60 and 64 MeV/nucleon, i n contrast to an anomalously low result obtained at 43 MeV/nucleon. By coupling a multi-configuration description of the projectile structure with realistic reaction theory, the XCDCC model provides for the first time a fully quantum mechanical description of Coulomb excitation. The XCDCC calculations reveal that the excitation process involves significant contributions from nuclear, continuum, and higher-order effects. An analysis of the present and two earlier intermediate energy measurements yields a combined B(E1) strength of 0.105(7) e2^2fm2^2. This value is in good agreement with the value deduced independently from the lifetime of the 1/21/2^- state in 11^{11}Be, and has a comparable p recision.Comment: 5 pages, 2 figures, accepted for publication in Phys. Lett.

    Helium Clustering in Neutron-Rich Be Isotopes

    Get PDF
    Measurements of the helium-cluster breakup and neutron removal cross sections for neutron-rich Be isotopes A=10-12,14 are presented. These have been studied in the 30 to 42 MeV/u energy range where reaction measurements are proposed to be sensitive to the cluster content of the ground-state wave-function. These measurements provide a comprehensive survey of the decay processes of the Be isotopes by which the valence neutrons are removed revealing the underlying alpha-alpha core-cluster structure. The measurements indicate that clustering in the Be isotopes remains important up to the drip-line nucleus 14^Be and that the dominant helium-cluster structure in the neutron-rich Be isotopes corresponds to alpha-Xn-alpha.Comment: 5 pages, 2 tables and 3 figure

    Structure around the island of inversion with single-neutron knockout reactions at GANIL

    Get PDF
    CERN-Proceedings-2010-001 available at http://www.fluka.org/Varenna2009/procmat.htmInternational audienceThe nuclear structure of the 31Mg nucleus has been studied with the singleneutron knockout reaction. We report on the preliminary results of an experiment performed with the EXOGAM array coupled, for the first time, to the SPEG spectrometer at GANIL.We present a provisional result for the inclusive single-neutron knockout cross section of σinc= 90(5) mb. Preliminary exclusive cross sections for the measured bound states, including the ground state, are also presented. Finally, preliminary longitudinal momentum distributions for the ground state and first excited state are also shown. These results are compared to Monte Carlo Shell-Model calculations in the sd-pf region

    Analysis of states in <sup>13</sup>C populated in <sup>9</sup>Be + <sup>4</sup>He resonant scattering

    Get PDF
    Measurements of 9Be+α resonant scattering have been performed using the thick-target approach with a 4He gas volume and a large area silicon strip detector. 9Be beam energies in the range 12 to 21.4 MeV were used to measure the 13C excitation energy spectrum between 13.2 and 16.2 MeV. An R-matrix analysis has been performed to characterize the spins and widths of 13C resonances, some of which have been proposed to be associated with a 3α+n molecular band
    corecore