447 research outputs found

    Protease domain and transmembrane domain of the type VII secretion mycosin protease determine system-specific functioning in mycobacteria

    Get PDF
    Mycobacteria use type VII secretion (T7S) systems to secrete proteins across their highly hydrophobic diderm cell envelope. Pathogenic mycobacteria, such as Mycobacterium tuberculosis and Mycobacterium marinum, have up to five of these systems, named ESX-1 to -5. Most of these systems contain a set of five conserved membrane components, of which the four Ecc proteins form the core membrane-embedded secretion complex. The fifth conserved membrane protein, the mycosin protease (MycP), is not part of the core complex, but is essential for secretion, as it stabilizes this membrane complex. Here, we investigated which MycP domain is required for this stabilization by producing hybrid constructs between MycP1 and MycP5 in M. marinum and analyzed their effect on ESX-1 and ESX-5 secretion. We found that both the protease and transmembrane (TM) domain are required for the ESX system-specific function of mycosins. In addition, we observed that the TM domain strongly affects MycP protein levels. We also show that the extended loops 1 and 2 in the protease domain are probably primarily involved in MycP stability, whereas loop 3 and the MycP5-specific loop 5 are dispensable. The atypical propeptide, or N-terminal extension, is required only for MycP stability. Finally, we show that the protease domain of MycPP1, encoded by the esx-P1 locus on the pRAW plasmid, is functionally redundant to the protease domain of MycP5 These results provide the first insight into the regions of mycosins involved in the interaction with and the stabilization of their respective ESX complexes

    R-Parity Violation and Non-Abelian Discrete Family Symmetry

    Full text link
    We investigate the implications of R-parity violating operators in a model with family symmetry. The family symmetry can determine the form of R-parity violating operators as well as the Yukawa matrices responsible for fermion masses and mixings. In this paper we consider a concrete model with non-abelian discrete symmetry Q_6 which contains only three R-parity violating operators. We find that ratios of decay rates of the lepton flavor violating processes are fixed thanks to the family symmetry, predicting BR(tau to 3e)/BR(tau to 3mu) ~ 4 m_{mu}^2/m_{tau}^2.Comment: 20 pages, 3 figure

    The Casimir Problem of Spherical Dielectrics: Numerical Evaluation for General Permittivities

    Get PDF
    The Casimir mutual free energy F for a system of two dielectric concentric nonmagnetic spherical bodies is calculated, at arbitrary temperatures. The present paper is a continuation of an earlier investigation [Phys. Rev. E {\bf 63}, 051101 (2001)], in which F was evaluated in full only for the case of ideal metals (refractive index n=infinity). Here, analogous results are presented for dielectrics, for some chosen values of n. Our basic calculational method stems from quantum statistical mechanics. The Debye expansions for the Riccati-Bessel functions when carried out to a high order are found to be very useful in practice (thereby overflow/underflow problems are easily avoided), and also to give accurate results even for the lowest values of l down to l=1. Another virtue of the Debye expansions is that the limiting case of metals becomes quite amenable to an analytical treatment in spherical geometry. We first discuss the zero-frequency TE mode problem from a mathematical viewpoint and then, as a physical input, invoke the actual dispersion relations. The result of our analysis, based upon the adoption of the Drude dispersion relation at low frequencies, is that the zero-frequency TE mode does not contribute for a real metal. Accordingly, F turns out in this case to be only one half of the conventional value at high temperatures. The applicability of the Drude model in this context has however been questioned recently, and we do not aim at a complete discussion of this issue here. Existing experiments are low-temperature experiments, and are so far not accurate enough to distinguish between the different predictions. We also calculate explicitly the contribution from the zero-frequency mode for a dielectric. For a dielectric, this zero-frequency problem is absent.Comment: 23 pages, LaTeX, 7 ps figures; expanded discussion, especially in Sec. 5. To appear in Phys. Rev.

    Higgs-Boson Production Induced by Bottom Quarks

    Full text link
    Bottom quark-induced processes are responsible for a large fraction of the LHC discovery potential, in particular for supersymmetric Higgs bosons. Recently, the discrepancy between exclusive and inclusive Higgs boson production rates has been linked to the choice of an appropriate bottom factorization scale. We investigate the process kinematics at hadron colliders and show that it leads to a considerable decrease in the bottom factorization scale. This effect is the missing piece needed to understand the corresponding higher order results. Our results hold generally for charged and for neutral Higgs boson production at the LHC as well as at the Tevatron. The situation is different for single top quark production, where we find no sizeable suppression of the factorization scale. Turning the argument around, we can specify how large the collinear logarithms are, which can be resummed using the bottom parton picture.Comment: 18 page

    Charged Higgs Boson Production in Bottom-Gluon Fusion

    Full text link
    We compute the complete next-to-leading order SUSY-QCD corrections for the associated production of a charged Higgs boson with a top quark via bottom-gluon fusion. We investigate the applicability of the bottom parton description in detail. The higher order corrections can be split into real and virtual corrections for a general two Higgs doublet model and into additional massive supersymmetric loop contributions. We find that the perturbative behavior is well under control. The supersymmetric contributions consist of the universal bottom Yukawa coupling corrections and non-factorizable diagrams. Over most of the relevant supersymmetric parameter space the Yukawa coupling corrections are sizeable, while the remaining supersymmetric loop contributions are negligible.Comment: 18 pages, v2: some discussions added, v3: published versio

    Supersymmetric Electroweak Corrections to Charged Higgs Boson Production in Association with a Top Quark at Hadron Colliders

    Get PDF
    We calculate the O(αewmt(b)2/mW2)O(\alpha_{ew}m_{t(b)}^{2}/m_{W}^{2}) and O(αewmt(b)4/mW4)O(\alpha_{ew} m_{t(b)}^4/m_W^4) supersymmetric electroweak corrections to the cross section for the charged Higgs boson production in association with a top quark at the Tevatron and the LHC. These corrections arise from the quantum effects which are induced by potentially large Yukawa couplings from the Higgs sector and the chargino-top(bottom)-sbottom(stop) couplings, neutralino-top(bottom)-stop(sbottom) couplings and charged Higgs-stop-sbottom couplings. They can decrease or increase the cross section depending on tanβ\tan\beta but are not very sensitive to the mass of the charged Higgs boson for high tanβ\tan\beta. At low tanβ(=2)\tan\beta(=2) the corrections decrease the total cross sections significantly, which exceed -12% for mH±m_{H^{\pm}} below 300GeV300GeV at both the Tevatron and the LHC, but for mH±>300GeVm_{H^{\pm}}>300GeV the corrections can become very small at the LHC. For high tanβ(=10,30)\tan\beta(=10,30) these corrections can decrease or increase the total cross sections, and the magnitude of the corrections are at most a few percent at both the Tevatron and the LHC.Comment: 28 pages including 4 eps figure

    Collision times in pi-pi and pi-K scattering and spectroscopy of meson resonances

    Full text link
    Using the concept of collision time (time delay) introduced by Eisenbud and Wigner and its connection to on-shell intermediate unstable states, we study mesonic resonances in pi-pi and pi-K scattering. The time-delay method proves its usefulness by revealing the spectrum of the well-known rho- and K*-mesons and by supporting some speculations on rho-mesons in the 1200 MeV region. We use this method further to shed some light on more speculative meson resonances, among others the enigmatic scalars. We confirm the existence of chiralons below 1 GeV in the unflavoured and strange meson sector.Comment: 22 pages LaTex, 8 figure

    A Naturally Narrow Positive Parity Theta^+

    Full text link
    We present a consistent color-flavor-spin-orbital wave function for a positive parity Theta^+ that naturally explains the observed narrowness of the state. The wave function is totally symmetric in its flavor-spin part and totally antisymmetric in its color-orbital part. If flavor-spin interactions dominate, this wave function renders the positive parity Theta^+ lighter than its negative parity counterpart. We consider decays of the Theta^+ and compute the overlap of this state with the kinematically allowed final states. Our results are numerically small. We note that dynamical correlations between quarks are not necessary to obtain narrow pentaquark widths.Comment: 10 pages, 1 figure, Revtex4, two-column format, version to be published in Phys. Rev. D, includes numerical estimates of decay width

    Tau Polarization Asymmetry in BXsτ+τB\to X_s\tau^+\tau^-

    Full text link
    Rare BB decays provide an opportunity to probe for new physics beyond the Standard Model. In this paper, we propose to measure the tau polarization in the inclusive decay BXsτ+τB\to X_s\tau^+\tau^- and discuss how it can be used, in conjunction with other observables, to completely determine the parameters of the flavor-changing low-energy effective Hamiltonian. Both the Standard Model and several new physics scenarios are examined. This process has a large enough branching fraction, few×107\sim {\rm few}\times 10^{-7}, such that sufficient statistics will be provided by the B-Factories currently under construction.Comment: 11 pages, LaTex file with psfig. Figures included via uufiles. Lengthened version. Includes new calculation of Monte Carlo fit to Wilson coefficient

    Reconstructing Neutrino Properties from Collider Experiments in a Higgs Triplet Neutrino Mass Model

    Get PDF
    We extend the minimal supersymmetric standard model with bilinear R-parity violation to include a pair of Higgs triplet superfields. The neutral components of the Higgs triplets develop small vacuum expectation values (VEVs) quadratic in the bilinear R-parity breaking parameters. In this scheme the atmospheric neutrino mass scale arises from bilinear R-parity breaking while for reasonable values of parameters the solar neutrino mass scale is generated from the small Higgs triplet VEVs. We calculate neutrino masses and mixing angles in this model and show how the model can be tested at future colliders. The branching ratios of the doubly charged triplet decays are related to the solar neutrino angle via a simple formula.Comment: 19 pages, 4 figures; one formula corrected, two author's names corrected; some explanatory comments adde
    corecore