32 research outputs found

    Seamounts : characteristics, formation, mineral deposits and biodiversity

    Get PDF
    Seamounts represent crust-mantle activities and are areas of petrological deviations, biodiversity, seismicity and hydrothermal events. An estimated ~50 million tons/year of basalts are required to produce seamounts suggesting intense oceanic volcanism. Seamounts either occur as chains perpendicular to the ridge or as isolated entities or in clusters. Seamounts may host basalts, hyaloclastites, gabbros and serpentinites and these variants perhaps evolve from multiple melting domains as a consequence of large-scale thermal structure and mantle lithology. Nonhotspot seamounts on a young, thin and hot lithosphere host tholeiites whereas the plume related ones on thick, older lithosphere may be either tholeiitic or alkaline. Seamounts may bear hydrothermal deposits (Fe, Mn, Co) rare metals and phosphorites. The resistance of seamounts to subduction could trigger slides; while shearing of seamounts buried in subduction zones leads to seismicity, both of which could cause tsunamis. Seamounts greatly affect the circulation patterns and currents, which in turn influence the surrounding biota. We review here the seamounts in terms of discovery, characteristics, distribution and their influence on the marine environment

    On Born approximation in black hole scattering

    Full text link
    A massless field propagating on spherically symmetric black hole metrics such as the Schwarzschild, Reissner-Nordstr\"{o}m and Reissner-Nordstr\"{o}m-de Sitter backgrounds is considered. In particular, explicit formulae in terms of transcendental functions for the scattering of massless scalar particles off black holes are derived within a Born approximation. It is shown that the conditions on the existence of the Born integral forbid a straightforward extraction of the quasi normal modes using the Born approximation for the scattering amplitude. Such a method has been used in literature. We suggest a novel, well defined method, to extract the large imaginary part of quasinormal modes via the Coulomb-like phase shift. Furthermore, we compare the numerically evaluated exact scattering amplitude with the Born one to find that the approximation is not very useful for the scattering of massless scalar, electromagnetic as well as gravitational waves from black holes

    DPHL: A DIA Pan-human Protein Mass Spectrometry Library for Robust Biomarker Discovery

    Get PDF
    To address the increasing need for detecting and validating protein biomarkers in clinical specimens, mass spectrometry (MS)-based targeted proteomic techniques, including the selected reaction monitoring (SRM), parallel reaction monitoring (PRM), and massively parallel data-independent acquisition (DIA), have been developed. For optimal performance, they require the fragment ion spectra of targeted peptides as prior knowledge. In this report, we describe a MS pipeline and spectral resource to support targeted proteomics studies for human tissue samples. To build the spectral resource, we integrated common open-source MS computational tools to assemble a freely accessible computational workflow based on Docker. We then applied the workflow to generate DPHL, a comprehensive DIA pan-human library, from 1096 data-dependent acquisition (DDA) MS raw files for 16 types of cancer samples. This extensive spectral resource was then applied to a proteomic study of 17 prostate cancer (PCa) patients. Thereafter, PRM validation was applied to a larger study of 57 PCa patients and the differential expression of three proteins in prostate tumor was validated. As a second application, the DPHL spectral resource was applied to a study consisting of plasma samples from 19 diffuse large B cell lymphoma (DLBCL) patients and 18 healthy control subjects. Differentially expressed proteins between DLBCL patients and healthy control subjects were detected by DIA-MS and confirmed by PRM. These data demonstrate that the DPHL supports DIA and PRM MS pipelines for robust protein biomarker discovery. DPHL is freely accessible at https://www.iprox.org/page/project.html?id=IPX0001400000

    Impedance study of aluminium surface subjected to various surface treatments

    Get PDF
    Aluminium surface has been subjected to various treatmente; like electropolishing, anodising, electropolishing and anodising and chemical etching. Impedance data have been obtained for tbe above treatments by exposing the samples in 3% sodium chloride for various timings. Data obtained have been analysed and explained with the help of an equivalent circuit. Electropolished and anodised aluminium surface i" having better corrosion resistance than bare aluminium, chemically treated and anodised and electropolfshed aluminium

    Seamounts : characteristics, formation, mineral deposits and biodiversity

    No full text
    Seamounts represent crust-mantle activities and are areas of petrological deviations, biodiversity, seismicity and hydrothermal events. An estimated ~50 million tons/year of basalts are required to produce seamounts suggesting intense oceanic volcanism. Seamounts either occur as chains perpendicular to the ridge or as isolated entities or in clusters. Seamounts may host basalts, hyaloclastites, gabbros and serpentinites and these variants perhaps evolve from multiple melting domains as a consequence of large-scale thermal structure and mantle lithology. Nonhotspot seamounts on a young, thin and hot lithosphere host tholeiites whereas the plume related ones on thick, older lithosphere may be either tholeiitic or alkaline. Seamounts may bear hydrothermal deposits (Fe, Mn, Co) rare metals and phosphorites. The resistance of seamounts to subduction could trigger slides; while shearing of seamounts buried in subduction zones leads to seismicity, both of which could cause tsunamis. Seamounts greatly affect the circulation patterns and currents, which in turn influence the surrounding biota. We review here the seamounts in terms of discovery, characteristics, distribution and their influence on the marine environment

    Metabolic consequences of p300 gene deletion in human colon cancer cells

    No full text
    10.1158/0008-5472.CAN-05-2999Cancer Research66157606-761
    corecore