323 research outputs found

    Three-particle entanglement versus three-particle nonlocality

    Full text link
    The notions of three-particle entanglement and three-particle nonlocality are discussed in the light of Svetlichny's inequality [Phys. Rev. D 35, 3066 (1987)]. It is shown that there exist sets of measurements which can be used to prove three-particle entanglement, but which are nevertheless useless at proving three-particle nonlocality. In particular, it is shown that the quantum predictions giving a maximal violation of Mermin's three-particle Bell inequality [Phys. Rev. Lett. 65, 1838 (1990)] can be reproduced by a hybrid hidden variables model in which nonlocal correlations are present only between two of the particles. It should be possible, however, to test the existence of both three-particle entanglement and three-particle nonlocality for any given quantum state via Svetlichny's inequality.Comment: REVTeX4, 4 pages, journal versio

    Better detection of Multipartite Bound Entanglement with Three-Setting Bell Inequalities

    Full text link
    It was shown in Phys. Rev. Lett., 87, 230402 (2001) that N (N >= 4) qubits described by a certain one parameter family F of bound entangled states violate Mermin-Klyshko inequality for N >= 8. In this paper we prove that the states from the family F violate Bell inequalities derived in Phys. Rev. A, 56, R1682 (1997), in which each observer measures three non-commuting sets of orthogonal projectors, for N >=7. We also derive a simple one parameter family of entanglement witnesses that detect entanglement for all the states belonging to F. It is possible that these new entanglement witnesses could be generated by some Bell inequalities.Comment: Revtex4, 1 figur

    Massless Minimally Coupled Fields in De Sitter Space: O(4)-Symmetric States Versus De Sitter Invariant Vacuum

    Get PDF
    The issue of de Sitter invariance for a massless minimally coupled scalar field is revisited. Formally, it is possible to construct a de Sitter invariant state for this case provided that the zero mode of the field is quantized properly. Here we take the point of view that this state is physically acceptable, in the sense that physical observables can be computed and have a reasonable interpretation. In particular, we use this vacuum to derive a new result: that the squared difference between the field at two points along a geodesic observer's space-time path grows linearly with the observer's proper time for a quantum state that does not break de Sitter invariance. Also, we use the Hadamard formalism to compute the renormalized expectation value of the energy momentum tensor, both in the O(4) invariant states introduced by Allen and Follaci, and in the de Sitter invariant vacuum. We find that the vacuum energy density in the O(4) invariant case is larger than in the de Sitter invariant case.Comment: TUTP-92-1, to appear in Phys. Rev.

    Decoupling in an expanding universe: boundary RG-flow affects initial conditions for inflation

    Full text link
    We study decoupling in FRW spacetimes, emphasizing a Lagrangian description throughout. To account for the vacuum choice ambiguity in cosmological settings, we introduce an arbitrary boundary action representing the initial conditions. RG flow in these spacetimes naturally affects the boundary interactions. As a consequence the boundary conditions are sensitive to high-energy physics through irrelevant terms in the boundary action. Using scalar field theory as an example, we derive the leading dimension four irrelevant boundary operators. We discuss how the known vacuum choices, e.g. the Bunch-Davies vacuum, appear in the Lagrangian description and square with decoupling. For all choices of boundary conditions encoded by relevant boundary operators, of which the known ones are a subset, backreaction is under control. All, moreover, will generically feel the influence of high-energy physics through irrelevant (dimension four) boundary corrections. Having established a coherent effective field theory framework including the vacuum choice ambiguity, we derive an explicit expression for the power spectrum of inflationary density perturbations including the leading high energy corrections. In accordance with the dimensionality of the leading irrelevant operators, the effect of high energy physics is linearly proportional to the Hubble radius H and the scale of new physics L= 1/M.Comment: LaTeX plus axodraw figures. v2: minor corrections; refs added. JHEP style: 34 pages + 18 pages appendi

    Production and detection of three-qubit entanglement in the Fermi sea

    Full text link
    Building on a previous proposal for the entanglement of electron-hole pairs in the Fermi sea, we show how 3 qubits can be entangled without using electron-electron interactions. As in the 2-qubit case, this electronic scheme works even if the sources are in (local) thermal equilibrium -- in contrast to the photonic analogue. The 3 qubits are represented by 4 edge-channel excitations in the quantum Hall effect (2 hole excitations plus 2 electron excitations with identical channel index). The entangler consists of an adiabatic point contact flanked by a pair of tunneling point contacts. The irreducible 3-qubit entanglement is characterized by the tangle, which is expressed in terms of the transmission matrices of the tunneling point contacts. The maximally entangled Greenberger-Horne-Zeilinger (GHZ) state is obtained for channel-independent tunnel probabilities. We show how low-frequency noise measurements can be used to determine an upper and lower bound to the tangle. The bounds become tighter the closer the electron-hole state is to the GHZ state.Comment: 8 pages including 4 figures; [2017: fixed broken postscript figures

    Super-Hubble de Sitter Fluctuations and the Dynamical RG

    Full text link
    Perturbative corrections to correlation functions for interacting theories in de Sitter spacetime often grow secularly with time, due to the properties of fluctuations on super-Hubble scales. This growth can lead to a breakdown of perturbation theory at late times. We argue that Dynamical Renormalization Group (DRG) techniques provide a convenient framework for interpreting and resumming these secularly growing terms. In the case of a massless scalar field in de Sitter with quartic self-interaction, the resummed result is also less singular in the infrared, in precisely the manner expected if a dynamical mass is generated. We compare this improved infrared behavior with large-N expansions when applicable.Comment: 33 pages, 4 figure

    Renormalization Group and Decoupling in Curved Space: II. The Standard Model and Beyond

    Full text link
    We continue the study of the renormalization group and decoupling of massive fields in curved space, started in the previous article and analyse the higher derivative sector of the vacuum metric-dependent action of the Standard Model. The QCD sector at low-energies is described in terms of the composite effective fields. For fermions and scalars the massless limit shows perfect correspondence with the conformal anomaly, but similar limit in a massive vector case requires an extra compensating scalar. In all three cases the decoupling goes smoothly and monotonic. A particularly interesting case is the renormalization group flow in the theory with broken supersymmetry, where the sign of one of the beta-functions changes on the way from the UV to IR.Comment: 27 pages, 8 figure

    Clinical Outcomes and Survival Following Treatment of Metastatic Castrate-Refractory Prostate Cancer With Docetaxel Alone or With Strontium-89, Zoledronic Acid, or Both

    Get PDF
    Importance Bony metastatic castrate-refractory prostate cancer (CRPC) has a poor prognosis and high morbidity. Zoledronic acid (ZA) is commonly combined with docetaxel in practice but lacks evidence that combining is effective, and strontium-89 (Sr89) is generally used palliatively in patients unfit for chemotherapy. Phase 2 analysis of the TRAPEZE trial confirmed combining the agents was safe and feasible, and the objectives of phase 3 include assessment of the treatments on survival. Objective To determine clinical effectiveness and cost-effectiveness of combining docetaxel, ZA, and Sr89, all having palliative benefits and used in bony metastatic CRPC to control bone symptoms and, for docetaxel, to prolong survival. Design, Setting, and Participants The TRAPEZE trial is a 2 × 2 factorial trial comparing docetaxel alone or with ZA, Sr89, or both. A cohort of 757 participants were recruited between February 2005 and February 2012 from hospitals in the United Kingdom. Overall, 169 participants (45%) had received palliative radiotherapy, and the median (IQR) prostate-specific antigen level was 146 (51-354). Follow-ups were performed for at least 12 months. Interventions Up to 10 cycles of docetaxel alone; docetaxel with ZA; docetaxel with a single Sr89 dose after 6 cycles; or docetaxel with both ZA and Sr89. Main Outcomes and Measures Primary outcomes included clinical progression-free survival (CPFS) (pain progression, skeletal-related events [SREs], or death) and cost-effectiveness. Secondary outcomes included SRE-free interval, pain progression–free interval, total SREs, and overall survival (OS). Results Overall, of 757 participants, 349 (46%) completed docetaxel treatment. Median (IQR) age was 68 (63-73) years. Clinical progression-free survival did not reach statistical significance for either Sr89 or ZA. Cox regression analysis adjusted for all stratification variables showed benefit of Sr89 on CPFS (hazard ratio [HR], 0.85; 95% CI, 0.73-0.99; P = .03) and confirmed no effect of ZA (HR, 0.98; 95% CI, 0.85-1.14; P = .81); ZA had a significant effect on SRE-free interval (HR, 0.78; 95% CI, 0.65-0.95; P = .01). For OS, there was no effect of either Sr89 (HR, 0.92; 95% CI, 0.79-1.08; P = 0.34) or ZA (HR, 0.99; 95% CI, 0.84-1.16; P = 0.91). Conclusions and Relevance Strontium-89 combined with docetaxel improved CPFS but did not improve OS, SRE-free interval, or total SREs; ZA did not improve CPFS or OS but did significantly improve median SRE-free interval and reduced total SREs by around one-third, suggesting a role as postchemotherapy maintenance therapy

    Non-vacuum Solutions of Bianchi Type VI_0 Universe in f(R) Gravity

    Full text link
    In this paper, we solve the field equations in metric f(R) gravity for Bianchi type VI_0 spacetime and discuss evolution of the expanding universe. We find two types of non-vacuum solutions by taking isotropic and anisotropic fluids as the source of matter and dark energy. The physical behavior of these solutions is analyzed and compared in the future evolution with the help of some physical and geometrical parameters. It is concluded that in the presence of isotropic fluid, the model has singularity at t~=0\tilde{t}=0 and represents continuously expanding shearing universe currently entering into phantom phase. In anisotropic fluid, the model has no initial singularity and exhibits the uniform accelerating expansion. However, the spacetime does not achieve isotropy as tt\rightarrow\infty in both of these solutions.Comment: 20 pages, 5 figures, accepted for publication in Astrophys. Space Sc

    Precise Measurements of Beam Spin Asymmetries in Semi-Inclusive π0\pi^0 production

    Get PDF
    We present studies of single-spin asymmetries for neutral pion electroproduction in semi-inclusive deep-inelastic scattering of 5.776 GeV polarized electrons from an unpolarized hydrogen target, using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. A substantial sinϕh\sin \phi_h amplitude has been measured in the distribution of the cross section asymmetry as a function of the azimuthal angle ϕh\phi_h of the produced neutral pion. The dependence of this amplitude on Bjorken xx and on the pion transverse momentum is extracted with significantly higher precision than previous data and is compared to model calculations.Comment: to be submitted PL
    corecore