35 research outputs found

    Particle creation in a Robertson-Walker Universe revisited

    Get PDF
    We reanalyze the problem of particle creation in a 3+1 spatially closed Robertson-Walker space-time. We compute the total number of particles produced by this non-stationary gravitational background as well as the corresponding total energy and find a slight discrepancy between our results and those recently obtained in the literatur

    Constrained Analysis of Topologically Massive Gravity

    Full text link
    We quantize the Einstein gravity in the formalism of weak gravitational fields by using the constrained Hamiltonian method. Special emphasis is given to the 2+1 spacetime dimensional case where a (topological) Chern-Simons term is added to the Lagrangian.Comment: 15 pages, IF-UFRJ-21/9

    Trace anomaly of the conformal gauge field

    Full text link
    The proposed by Bastianelli and van Nieuwenhuizen new method of calculations of trace anomalies is applied in the conformal gauge field case. The result is then reproduced by the heat equation method. An error in previous calculation is corrected. It is pointed out that the introducing gauge symmetries into a given system by a field-enlarging transformation can result in unexpected quantum effects even for trivial configurations.Comment: 9 pages, LaTeX file, BI-TP 93/3

    An Exact Solution for Static Scalar Fields Coupled to Gravity in (2+1)(2+1)-Dimensions

    Full text link
    We obtain an exact solution for the Einstein's equations with cosmological constant coupled to a scalar, static particle in static, "spherically" symmetric background in 2+1 dimensions.Comment: 9 pages. Replaced by a revised versio

    Electronic properties of graphene with a topological defect

    Full text link
    Various types of topological defects in graphene are considered in the framework of the continuum model for long-wavelength electronic excitations, which is based on the Dirac--Weyl equation. The condition for the electronic wave function is specified, and we show that a topological defect can be presented as a pseudomagnetic vortex at the apex of a graphitic nanocone; the flux of the vortex is related to the deficit angle of the cone. The cases of all possible types of pentagonal defects, as well as several types of heptagonal defects (with the numbers of heptagons up to three, and six), are analyzed. The density of states and the ground state charge are determined.Comment: 25 pages, 3 figures, 1 table,minor correction

    Thermal partition function of photons and gravitons in a Rindler wedge

    Get PDF
    The thermal partition function of photons in any covariant gauge and gravitons in the harmonic gauge, propagating in a Rindler wedge, are computed using a local ζ\zeta-function regularization approach. The correct Planckian leading order temperature dependence T4T^4 is obtained in both cases. For the photons, the existence of a surface term giving a negative contribution to the entropy is confirmed, as earlier obtained by Kabat, but this term is shown to be gauge dependent in the four-dimensional case and, therefore is discarded. It is argued that similar terms could appear dealing with any integer spin s≥1s\geq 1 in the massless case and in more general manifolds. Our conjecture is checked in the case of a graviton in the harmonic gauge, where different surface terms also appear, and physically consistent results arise dropping these terms. The results are discussed in relation to the quantum corrections to the black hole entropy.Comment: 29 pages, RevTeX, no figures. Minor errors corrected and a few comments changed since first submission. To be published on Phys.Rev.

    Hawking Radiation as Tunneling for Extremal and Rotating Black Holes

    Full text link
    The issue concerning semi-classical methods recently developed in deriving the conditions for Hawking radiation as tunneling, is revisited and applied also to rotating black hole solutions as well as to the extremal cases. It is noticed how the tunneling method fixes the temperature of extremal black hole to be zero, unlike the Euclidean regularity method that allows an arbitrary compactification period. A comparison with other approaches is presented.Comment: 17 pages, Latex document, typos corrected, four more references, improved discussion in section

    Quantum driven Bounce of the future Universe

    Full text link
    It is demonstrated that due to back-reaction of quantum effects, expansion of the universe stops at its maximum and takes a turnaround. Later on, it contracts to a very small size in finite future time. This phenomenon is followed by a " bounce" with re-birth of an exponentially expanding non-singular universe

    Inflation, quantum fields, and CMB anisotropies

    Get PDF
    Inflationary cosmology has proved to be the most successful at predicting the properties of the anisotropies observed in the cosmic microwave background (CMB). In this essay we show that quantum field renormalization significantly influences the generation of primordial perturbations and hence the expected measurable imprint of cosmological inflation on the CMB. However, the new predictions remain in agreement with observation, and in fact favor the simplest forms of inflation. In the near future, observations of the influence of gravitational waves from the early universe on the CMB will test our new predictions.Comment: 11 pages, 1 figure, Awarded with the fourth prize in the Gravity Research Foundation 2009 Essay Competitio

    Cosmological horizons and reconstruction of quantum field theories

    Get PDF
    As a starting point, we state some relevant geometrical properties enjoyed by the cosmological horizon of a certain class of Friedmann-Robertson-Walker backgrounds. Those properties are generalised to a larger class of expanding spacetimes MM admitting a geodesically complete cosmological horizon \scrim common to all co-moving observers. This structure is later exploited in order to recast, in a cosmological background, some recent results for a linear scalar quantum field theory in spacetimes asymptotically flat at null infinity. Under suitable hypotheses on MM, encompassing both the cosmological de Sitter background and a large class of other FRW spacetimes, the algebra of observables for a Klein-Gordon field is mapped into a subalgebra of the algebra of observables \cW(\scrim) constructed on the cosmological horizon. There is exactly one pure quasifree state λ\lambda on \cW(\scrim) which fulfils a suitable energy-positivity condition with respect to a generator related with the cosmological time displacements. Furthermore λ\lambda induces a preferred physically meaningful quantum state λM\lambda_M for the quantum theory in the bulk. If MM admits a timelike Killing generator preserving \scrim, then the associated self-adjoint generator in the GNS representation of λM\lambda_M has positive spectrum (i.e. energy). Moreover λM\lambda_M turns out to be invariant under every symmetry of the bulk metric which preserves the cosmological horizon. In the case of an expanding de Sitter spacetime, λM\lambda_M coincides with the Euclidean (Bunch-Davies) vacuum state, hence being Hadamard in this case. Remarks on the validity of the Hadamard property for λM\lambda_M in more general spacetimes are presented.Comment: 32 pages, 1 figure, to appear on Comm. Math. Phys., dedicated to Professor Klaus Fredenhagen on the occasion of his 60th birthda
    corecore