158 research outputs found
The electron-nucleon cross section in reactions
We examine commonly used approaches to deal with the scattering of electrons
from a bound nucleon. Several prescriptions are shown to be related by gauge
transformations. Nevertheless, due to current non-conservation, they yield
different results. These differences reflect the size of the uncertainty that
persists in the interpretation of experiments.Comment: 6 pp (10 in preprint form), ReVTeX, (+ 4 figures, uuencoded
Color Transparency Effects in Electron Deuteron Interactions at Intermediate Q^2
High momentum transfer electrodisintegration of polarized and unpolarized
deuterium targets, is studied. We show that the importance of final
state interactions-FSI, occuring when a knocked out nucleon interacts with the
other nucleon, depends strongly on the momentum of the spectator nucleon. In
particular, these FSI occur when the essential contributions to the scattering
amplitude arise from internucleon distances . But the absorption
of the high momentum may produce a point like configuration, which
evolves with time. In this case, the final state interactions probe the point
like configuration at the early stage of its evolution. The result is that
significant color transparency effects, which can either enhance or suppress
computed cross sections, are predicted to occur for .Comment: 37 pages LaTex, 12 uuencoded PostScript Figures as separate file, to
be published in Z.Phys.
Photoinduced 3D orientational order in side chain liquid crystalline azopolymers
We apply experimental technique based on the combination of methods dealing
with principal refractive indices and absorption coefficients to study the
photoinduced 3D orientational order in the films of liquid crystalline (LC)
azopolymers. The technique is used to identify 3D orientational configurations
of trans azobenzene chromophores and to characterize the degree of ordering in
terms of order parameters. We study two types of LC azopolymers which form
structures with preferred in-plane and out-of-plane alignment of
azochromophores, correspondingly. Using irradiation with the polarized light of
two different wavelengths we find that the kinetics of photoinduced anisotropy
can be dominated by either photo-reorientation or photoselection mechanisms
depending on the wavelength. We formulate the phenomenological model describing
the kinetics of photoinduced anisotropy in terms of the isomer concentrations
and the order parameter tensor. We present the numerical results for absorption
coefficients that are found to be in good agreement with the experimental data.
The model is also used to interpret the effect of changing the mechanism with
the wavelength of the pumping light.Comment: uses revtex4 28 pages, 10 figure
Estimating stream discharge of Aboine River Basin of Southeast Nigeria using modified Thornthwaite climatic water balance model
The study attempts to estimate the stream discharge of the Aboine river basin, southeast Nigeria, using modified climatic water balance approach. Moisture deficit in the basin generally begins from January and lasts up to April while utilization begins from October up to December. The basin attains a field capacity from August to September and decreases in moisture storage from October when more water is removed from the basin to meet plant water needs. The value of the circularity ratio of 0.29 showed that the Aboine Basin will produce little surface runoff. Results of bifurcation ratio, compactness coefficient, stream length and modeling of inter-basin parameters showed that the Aboine drainage basin is basically a flat surface. This will affect both the amount of water available from the basin for any water resources projects. Such information also provides the basis for demonstrating the effects of environmental control on the fluvial system and also for predicting the basin output variables. Surface runoff contribution to discharge was computed as a residual of our modified climatic water balance equation while groundwater flow contribution to discharge was determined from the separation of water stage hydrograph available for the study area from 1984 to 1987, using the hydrograph separation technique. Comparison of calculated discharge values using modified THWB climatic water balance with stream discharge determined from water- stage showed significant difference between computed stream discharge from water stage and discharge estimated from our water balance model at 0.05 level of confidence. This suggests that our modified water balance model if further improved maybe suitable for generating information on all the aspects of the moisture relationship in the basin in the absent of measured stream flow data.Keyword: Stream discharge, basin morphometry, surface flow, groundwater flow, water resourc
Subleading-twist effects in single-spin asymmetries in semi-inclusive deep-inelastic scattering on a longitudinally polarized hydrogen target
Single-spin asymmetries in the semi-inclusive production of charged pions in
deep-inelastic scattering from transversely and longitudinally polarized proton
targets are combined to evaluate the subleading-twist contribution to the
longitudinal case. This contribution is significantly positive for (\pi^+)
mesons and dominates the asymmetries on a longitudinally polarized target
previously measured by \hermes. The subleading-twist contribution for (\pi^-)
mesons is found to be small
Determination of the Deep Inelastic Contribution to the Generalised Gerasimov-Drell-Hearn Integral for the Proton and Neutron
The virtual photon absorption cross section differences [sigma_1/2-sigma_3/2]
for the proton and neutron have been determined from measurements of polarised
cross section asymmetries in deep inelastic scattering of 27.5 GeV
longitudinally polarised positrons from polarised 1H and 3He internal gas
targets. The data were collected in the region above the nucleon resonances in
the kinematic range nu < 23.5 GeV and 0.8 GeV**2 < Q**2 < 12 GeV**2. For the
proton the contribution to the generalised Gerasimov-Drell-Hearn integral was
found to be substantial and must be included for an accurate determination of
the full integral. Furthermore the data are consistent with a QCD
next-to-leading order fit based on previous deep inelastic scattering data.
Therefore higher twist effects do not appear significant.Comment: 6 pages, 3 figures, 1 table, revte
Observation of a Coherence Length Effect in Exclusive Rho^0 Electroproduction
Exclusive incoherent electroproduction of the rho^0(770) meson from 1H, 2H,
3He, and 14N targets has been studied by the HERMES experiment at squared
four-momentum transfer Q**2>0.4 GeV**2 and positron energy loss nu from 9 to 20
GeV. The ratio of the 14N to 1H cross sections per nucleon, known as the
nuclear transparency, was found to decrease with increasing coherence length of
quark-antiquark fluctuations of the virtual photon. The data provide clear
evidence of the interaction of the quark- antiquark fluctuations with the
nuclear medium.Comment: RevTeX, 5 pages, 3 figure
Double-Spin Asymmetry in the Cross Section for Exclusive rho^0 Production in Lepton-Proton Scattering
Evidence for a positive longitudinal double-spin asymmetry = 0.24
+-0.11 (stat) +-0.02 (syst) in the cross section for exclusive diffractive
rho^0(770) vector meson production in polarised lepton-proton scattering was
observed by the HERMES experiment. The longitudinally polarised 27.56 GeV HERA
positron beam was scattered off a longitudinally polarised pure hydrogen gas
target. The average invariant mass of the photon-proton system has a value of
= 4.9 GeV, while the average negative squared four-momentum of the virtual
photon is = 1.7 GeV^2. The ratio of the present result to the
corresponding spin asymmetry in inclusive deep-inelastic scattering is in
agreement with an early theoretical prediction based on the generalised vector
meson dominance model.Comment: 10 pages, 4 embedded figures, LaTe
The Role of Color Neutrality in Nuclear Physics--Modifications of Nucleonic Wave Functions
The influence of the nuclear medium upon the internal structure of a
composite nucleon is examined. The interaction with the medium is assumed to
depend on the relative distances between the quarks in the nucleon consistent
with the notion of color neutrality, and to be proportional to the nucleon
density. In the resulting description the nucleon in matter is a superposition
of the ground state (free nucleon) and radial excitations. The effects of the
nuclear medium on the electromagnetic and weak nucleon form factors, and the
nucleon structure function are computed using a light-front constituent quark
model. Further experimental consequences are examined by considering the
electromagnetic nuclear response functions. The effects of color neutrality
supply small but significant corrections to predictions of observables.Comment: 37 pages, postscript figures available on request to
[email protected]
Measurement of the Proton Spin Structure Function g1p with a Pure Hydrogen Target
A measurement of the proton spin structure function g1p(x,Q^2) in
deep-inelastic scattering is presented. The data were taken with the 27.6 GeV
longitudinally polarised positron beam at HERA incident on a longitudinally
polarised pure hydrogen gas target internal to the storage ring. The kinematic
range is 0.021<x<0.85 and 0.8 GeV^2<Q^2<20 GeV^2. The integral
Int_{0.021}^{0.85} g1p(x)dx evaluated at Q0^2 of 2.5 GeV^2 is
0.122+/-0.003(stat.)+/-0.010(syst.).Comment: 7 pages, 3 figures, 1 table, RevTeX late
- …
