9 research outputs found
Kimmeridgian-Tithonian sea-level fluctuations in the Uljanovsk-Saratov Basin (Russian Platform)
Abstract
The Uljanovsk-Saratov Basin, located in the southeast of the Russian Platform, presents an intriguing record of the Kimmeridgian-Tithonian sea-level fluctuations. In the Late Jurassic, this basin was a trough within the Interior Russian Sea. The data available from both outcrops and boreholes have permitted outlining a number of lithostratigraphic units and regional hiatuses in the northeastern segment of the Uljanovsk-Saratov Basin, thus permitting a precise reconstruction of transgressions/regressions and deepenings/shallowings. In total, three transgressive-regressive cycles and two deepening pulses have been established. These regionally documented changes were both related in part to global eustatic changes, and they also corresponded in part to the regional sea-level changes in some basins of Western Europe and Northern Africa, but not to those of the Arabian Platform. Differences observed between the global and regional curves as well as rapid Tithonian sea-level oscillations are explained by the influences of tectonic activity. It is hypothesized that the regional Tithonian oxygen depletion might have been a consequence from the rapid flooding of a densely vegetated land
Molecular and immunochemical phylogeny of Verticillium species
21 strains with all typical morphological characteristics of eight Verticillium species (Phyllachorales) were studied in this work, together with representatives from four Hypocreales species (11 strains), that were previously classified as members of the genus. The PCR products from two nuclear genes, i.e. the ITS1-5.8S-ITS2 region and RNA polymerase II largest subunit gene (rpb1), together with four mitochondrial genes, i.e. the small ribosomal rRNA subunit (rns), the two NADH dehydrogenase subunit genes (nad1 and nad3), and the cytochrome oxidase subunit III gene (cox3) were sequenced and analyzed. Similarly, antibodies raised against one strain of each of the species examined (V. nubilum and V. theobromae excluded) were used against the proteins of all other strains. The number and relative area of precipitates formed after crossed electrophoreses served to estimate the degree of immunochemical relatedness. Combined molecular and immunochemical data clarified the phylogenetic relationships of all true Verticillium species and provided a convincing insight into the evolutionary relation of the sect. Nigrescentia with members of the sect. Verticillium and sect. Prostrata that until recently were included in Verticillium. © The British Mycological Society