57 research outputs found
Spin-1 gravitational waves
Gravitational fields invariant for a 2-dimensional Lie algebra of Killing
fields [ X,Y] =Y, with Y of light type, are analyzed. The conditions for them
to represent gravitational waves are verified and the definition of energy and
polarization is addressed; realistic generating sources are described.Comment: 18 pages, no figures. A section on possible sources has been added.
Version accepted for publication in Int. J. Mod. Phys.
Quantum Mechanics on SO(3) via Non-commutative Dual Variables
We formulate quantum mechanics on SO(3) using a non-commutative dual space
representation for the quantum states, inspired by recent work in quantum
gravity. The new non-commutative variables have a clear connection to the
corresponding classical variables, and our analysis confirms them as the
natural phase space variables, both mathematically and physically. In
particular, we derive the first order (Hamiltonian) path integral in terms of
the non-commutative variables, as a formulation of the transition amplitudes
alternative to that based on harmonic analysis. We find that the non-trivial
phase space structure gives naturally rise to quantum corrections to the action
for which we find a closed expression. We then study both the semi-classical
approximation of the first order path integral and the example of a free
particle on SO(3). On the basis of these results, we comment on the relevance
of similar structures and methods for more complicated theories with
group-based configuration spaces, such as Loop Quantum Gravity and Spin Foam
models.Comment: 29 pages; matches the published version plus footnote 7, a journal
reference include
PP-waves, Israel's Matching conditions, Brane-world scenarios and BPS states in gravity
The matching between two 4-dimensional PP-waves is discussed by using
Israel's matching conditions. Physical consequences on the dynamics of (cosmic)
strings are analyzed. The extension to space-time of arbitrary dimension is
discussed and some interesting features related to the brane world scenario,
BPS states in gravity and Dirac-like quantization conditions are briefly
described.Comment: 16 pages, no figures. Accepted for pubblication on Classical and
Quantum Gravit
Heparin Induces Harmless Fibril Formation in Amyloidogenic W7FW14F Apomyoglobin and Amyloid Aggregation in Wild-Type Protein In Vitro
Glycosaminoglycans (GAGs) are frequently associated with amyloid deposits in most amyloid diseases, and there is evidence to support their active role in amyloid fibril formation. The purpose of this study was to obtain structural insight into GAG-protein interactions and to better elucidate the molecular mechanism underlying the effect of GAGs on the amyloid aggregation process and on the related cytotoxicity. To this aim, using Fourier transform infrared and circular diochroism spectroscopy, electron microscopy and thioflavin fluorescence dye we examined the effect of heparin and other GAGs on the fibrillogenesis and cytotoxicity of aggregates formed by the amyloidogenic W7FW14 apomyoglobin mutant. Although this protein is unrelated to human disease, it is a suitable model for in vitro studies because it forms amyloid-like fibrils under physiological conditions of pH and temperature. Heparin strongly stimulated aggregation into amyloid fibrils, thereby abolishing the lag-phase normally detected following the kinetics of the process, and increasing the yield of fibrils. Moreover, the protein aggregates were harmless when assayed for cytotoxicity in vitro. Neutral or positive compounds did not affect the aggregation rate, and the early aggregates were highly cytotoxic. The surprising result that heparin induced amyloid fibril formation in wild-type apomyoglobin and in the partially folded intermediate state of the mutant, i.e., proteins that normally do not show any tendency to aggregate, suggested that the interaction of heparin with apomyoglobin is highly specific because of the presence, in protein turn regions, of consensus sequences consisting of alternating basic and non-basic residues that are capable of binding heparin molecules. Our data suggest that GAGs play a dual role in amyloidosis, namely, they promote beneficial fibril formation, but they also function as pathological chaperones by inducing amyloid aggregation
Gliadin Peptide P31-43 Localises to Endocytic Vesicles and Interferes with Their Maturation
BACKGROUND:
Celiac Disease (CD) is both a frequent disease (1:100) and an interesting model of a disease induced by food. It consists in an immunogenic reaction to wheat gluten and glutenins that has been found to arise in a specific genetic background; however, this reaction is still only partially understood. Activation of innate immunity by gliadin peptides is an important component of the early events of the disease. In particular the so-called "toxic" A-gliadin peptide P31-43 induces several pleiotropic effects including Epidermal Growth Factor Receptor (EGFR)-dependent actin remodelling and proliferation in cultured cell lines and in enterocytes from CD patients. These effects are mediated by delayed EGFR degradation and prolonged EGFR activation in endocytic vesicles. In the present study we investigated the effects of gliadin peptides on the trafficking and maturation of endocytic vesicles.
METHODS/PRINCIPAL FINDINGS:
Both P31-43 and the control P57-68 peptide labelled with fluorochromes were found to enter CaCo-2 cells and interact with the endocytic compartment in pulse and chase, time-lapse, experiments. P31-43 was localised to vesicles carrying early endocytic markers at time points when P57-68-carrying vesicles mature into late endosomes. In time-lapse experiments the trafficking of P31-43-labelled vesicles was delayed, regardless of the cargo they were carrying. Furthermore in celiac enterocytes, from cultured duodenal biopsies, P31-43 trafficking is delayed in early endocytic vesicles. A sequence similarity search revealed that P31-43 is strikingly similar to Hrs, a key molecule regulating endocytic maturation. A-gliadin peptide P31-43 interfered with Hrs correct localisation to early endosomes as revealed by western blot and immunofluorescence microscopy.
CONCLUSIONS:
P31-43 and P57-68 enter cells by endocytosis. Only P31-43 localises at the endocytic membranes and delays vesicle trafficking by interfering with Hrs-mediated maturation to late endosomes in cells and intestinal biopsies. Consequently, in P31-43-treated cells, Receptor Tyrosine Kinase (RTK) activation is extended. This finding may explain the role played by gliadin peptides in inducing proliferation and other effects in enterocytes from CD biopsies
Diagenesis and fracturing of Paleocene-Eocene carbonate turbidite systems in the Ionian Basin: The example of the Kelcyra area (Albania)
The Kelcyra area is emplaced in a foreland fold-and-thrust belt (FFTB), characterized by a westward thrusting with the Triassic evaporites as the major decollement level. Several secondary features related with this evolution, like back-thrusting, folding, duplex structures, evaporite diapirism are present. During the FFTB evolution, the study area has been subjected to several fracturing events with associated stages of fluid migration. During the pre-deformational stage, complex textures such as crack-and-seal features most likely reflect expulsion of overpressured fluids. These fluids were dominantly host-rock buffered. Within the post-deformational stage, a meteoric fluid caused cementation and development of a karst network during a period of emergence after the thrust emplacement. Subsequently, Mg calcite reprecipitated in the more stable carbonate phase calcite and dolomite, which filled part of the karts network. The latter is finally dedolomitized and locally partially dissolved by a second meteoric fluid flow, which greatly increased the secondary porosity
Isothermal and cyclic oxidation behaviour of hot-pressed MSi2 compounds (with M = V, Ti, Cr)
International audienceThe oxidation resistance of MSi2 compounds with M = V, Ti, Cr was investigated from 450 to 950 degrees C in air under isothermal and cyclic conditions. Vanadium, chromium and titanium disilicide were not subjected to the pest phenomenon at 650 degrees C over 800 1-h cycles. The results demonstrated very low weight gains regardless of the testing conditions. Oxidation tests were also performed over long duration (1000 h) to identify the oxidation products. The MSi2 compounds were all subjected to the simultaneous oxidation of M and Si despite the formation of a protective silica scale. Increasing the duration of oxidation enhanced the protective properties of the silica scale. Therefore, short-term measurements (by thermogravimetry) did not allow an extrapolation of the MSi2 lifetime. The formation of molten V2O5 induced a higher oxidation rate of VSi2 and delayed the establishment of the protective silica scale compared with CrSi2 and TiSi2
The ability of silicide coating to delay the catastrophic oxidation of vanadium under severe conditions
International audienceV-4Cr-4Ti vanadium alloy is a potential cladding material for sodium-cooled fast-neutron reactors (SFRs). However, its affinity for oxygen and the subsequent embrittlement that oxygen induces causes a need for an oxygen diffusion barrier, which can be obtained by manufacturing a multi-layered silicide coating. The present work aims to evaluate the effects of thermal cycling (using a cyclic oxidation device) and tensile and compressive stresses (using the three-point flexure test) on the coated alloy system. Tests were performed in air up to 1100 degrees C, which is 200 degrees C higher than the accidental temperature for SFR applications. The results showed that the VSi2 coating was able to protect the vanadium substrate from oxidation for more than 400 1-h cycles between 1100 degrees C and room temperature. The severe bending applied to the coated alloy at 950 degrees C using a load of 75 MPa did not lead to specimen breakage. It can be suggested that the VSi2 coating has mechanical properties compatible with the V-4Cr-4Ti alloy for SFR applications
On the Bi2O3-Al2O3-PbO system
39th Edition of the Joint European Days on Equilibrium between Phases (JEEP), Nancy, FRANCE, MAR 19-21, 2013International audienceThe present work is dedicated to the description of the pseudo - binary Al 2 O 3 - Bi 2 O 3 and the isothermal section at 600°C of the system Al 2 O 3 - Bi 2 O 3 - PbO according to a Calphad approach. It takes part of the complete description of the complex system Pb - Bi - Fe - (Al,Cr) - O. Such study is of hig h interest for the nuclear community that aims to develop protective coatings for the MEGAPIE s pa l lation t arget to prevent the T91 steel from corrosion due to contact with lead - bismuth eutectic liquid
Thermodynamic description of the Cr–Nb–Si isothermal section at 1473K
International audienc
- …