70 research outputs found
In-medium two-nucleon properties in high electric fields
The quantum mechanical two - particle problem is considered in hot dense
nuclear matter under the influence of a strong electric field such as the field
of the residual nucleus in heavy - ion reactions. A generalized
Galitskii-Bethe-Salpeter equation is derived and solved which includes
retardation and field effects. Compared with the in-medium properties in the
zero-field case, bound states are turned into resonances and the scattering
phase shifts are modified. Four effects are observed due to the applied field:
(i) A suppression of the Pauli-blocking below nuclear matter densities, (ii)
the onset of pairing occurs already at higher temperatures due to the field,
(iii) a field dependent finite lifetime of deuterons and (iv) the imaginary
part of the quasiparticle self-energy changes its sign for special values of
density and temperatures indicating a phase instability. The latter effect may
influence the fragmentation processes. The lifetime of deuterons in a strong
Coulomb field is given explicitly.Comment: ps file + 7 figures (eps
Microscopic theory of the intracollisional field effect in semiconductor superlattices
A detailed analysis of the optical and transport properties of semiconductor superlattices in the high-field regime is presented. Electronic Bloch oscillations and the resulting terahertz emission signals are computed including phonon damping in the presence of the electric field. The modifications of the phonon-induced terahertz signal decay are analyzed including the movement of the carriers in the field (intracollisional field effect). For elevated fields it is shown that the interplay between electric field and electron-phonon interaction leads to resonance structures in the terahertz damping rate
Real-time Relaxation and Kinetics in Hot Scalar QED: Landau Damping
The real time evolution of field condensates with soft length scales
k^{-1}>(eT)^{-1} is solved in hot scalar electrodynamics, with a view towards
understanding relaxational phenomena in the QGP and the electroweak plasma. We
find that transverse gauge invariant non-equilibrium expectation values of
fields relax via {\em power laws} to asymptotic amplitudes that are determined
by the quasiparticle poles. The long time relaxational dynamics and relevant
time scales are determined by the behaviour of the retarded self-energy not at
the small frequencies, but at the Landau damping thresholds. This explains the
presence of power laws and not of exponential decay. Furthermore, we derive the
influence functional, the Langevin equation and the fluctuation-dissipation
theorem for the soft modes, identifying the correlation functions that emerge
in the classical limit. We show that a Markovian approximation fails to
describe the dynamics {\em both} at short and long times. We also introduce a
novel kinetic approach that goes beyond the standard Boltzmann equation and
incorporates off-shell processes and find that the distribution function for
soft quasiparticles relaxes with a power law through Landau damping. We also
find an unusual dressing dynamics of bare particles and anomalous (logarithmic)
relaxation of hard quasiparticles.Comment: 41 pages, 5 figures, uses revtex, replaced with version to appear in
Phys. Rev.
The United States COVID-19 Forecast Hub dataset
Academic researchers, government agencies, industry groups, and individuals have produced forecasts at an unprecedented scale during the COVID-19 pandemic. To leverage these forecasts, the United States Centers for Disease Control and Prevention (CDC) partnered with an academic research lab at the University of Massachusetts Amherst to create the US COVID-19 Forecast Hub. Launched in April 2020, the Forecast Hub is a dataset with point and probabilistic forecasts of incident cases, incident hospitalizations, incident deaths, and cumulative deaths due to COVID-19 at county, state, and national, levels in the United States. Included forecasts represent a variety of modeling approaches, data sources, and assumptions regarding the spread of COVID-19. The goal of this dataset is to establish a standardized and comparable set of short-term forecasts from modeling teams. These data can be used to develop ensemble models, communicate forecasts to the public, create visualizations, compare models, and inform policies regarding COVID-19 mitigation. These open-source data are available via download from GitHub, through an online API, and through R packages
- …