2,226 research outputs found

    Lattice study of semileptonic form factors with twisted boundary conditions

    Full text link
    We apply twisted boundary conditions to lattice QCD simulations of three-point correlation functions in order to access spatial components of hadronic momenta different from the integer multiples of 2 pi / L. We calculate the vector and scalar form factors relevant to the K -> pi semileptonic decay and consider all the possible ways of twisting one of the quark lines in the three-point functions. We show that the momentum shift produced by the twisted boundary conditions does not introduce any additional noise and easily allows to determine within a few percent statistical accuracy the form factors at quite small values of the four-momentum transfer, which are not accessible when periodic boundary conditions are considered. The use of twisted boundary conditions turns out to be crucial for a precise determination of the form factor at zero-momentum transfer, when a precise lattice point sufficiently close to zero-momentum transfer is not accessible with periodic boundary conditions.Comment: latex 15 pages, 4 figures and 3 tables; modified intro and discussions of the results; version to appear in PR

    Temperature dependence of spinon and holon excitations in one-dimensional Mott insulators

    Get PDF
    Motivated by the recent angle-resolved photoemission spectroscopy (ARPES) measurements on one-dimensional Mott insulators, SrCuO2{}_{2} and Na0.96{}_{0.96}V2{}_{2}O5{}_{5}, we examine the single-particle spectral weight of the one-dimensional (1D) Hubbard model at half-filling. We are particularly interested in the temperature dependence of the spinon and holon excitations. For this reason, we have performed the dynamical density matrix renormalization group and determinantal quantum Monte Carlo (QMC) calculations for the single-particle spectral weight of the 1D Hubbard model. In the QMC data, the spinon and holon branches become observable at temperatures where the short-range antiferromagnetic correlations develop. At these temperatures, the spinon branch grows rapidly. In the light of the numerical results, we discuss the spinon and holon branches observed by the ARPES experiments on SrCuO2{}_{2}. These numerical results are also in agreement with the temperature dependence of the ARPES results on Na0.96{}_{0.96}V2{}_{2}O5{}_{5}.Comment: 8 pages, 8 figure

    Improved estimates of rare K decay matrix-elements from Kl3 decays

    Full text link
    The estimation of rare K decay matrix-elements from Kl3 experimental data is extended beyond LO in Chiral Perturbation Theory. Isospin-breaking effects at NLO (and partially NNLO) in the ChPT expansion, as well as QED radiative corrections are now accounted for. The analysis relies mainly on the cleanness of two specific ratios of form-factors, for which the theoretical control is excellent. As a result, the uncertainties on the K+ --> pi+ nu nubar and KL --> pi0 nu nubar matrix-elements are reduced by a factor of about 7 and 4, respectively, and similarly for the direct CP-violating contribution to KL --> pi0 l+ l-. They could be reduced even further with better experimental data for the Kl3 slopes and the K+l3 branching ratios. As a result, the non-parametric errors for B(K --> pi nu nubar) and for the direct CP-violating contributions to B(KL --> pi0 l+ l-) are now completely dominated by those on the short-distance physics.Comment: 16 pages, 1 figure. Numerical analysis updated to include the recent Kl3 data. To appear in Phys. Rev.

    Chiral Corrections to the Hyperon Vector Form Factors

    Full text link
    We present the complete calculation of the SU(3)-breaking corrections to the hyperon vector form factors up to O(p^4) in the Heavy Baryon Chiral Perturbation Theory. Because of the Ademollo-Gatto theorem, at this order the results do not depend on unknown low energy constants and allow to test the convergence of the chiral expansion. We complete and correct previous calculations and find that O(p^3) and O(1/M_0) corrections are important. We also study the inclusion of the decuplet degrees of freedom, showing that in this case the perturbative expansion is jeopardized. These results raise doubts on the reliability of the chiral expansion for hyperons.Comment: 20 pages, 4 figures, v2: published versio

    Nucleon decay matrix elements with the Wilson quark action: an update

    Get PDF
    We present preliminary results of a new lattice computation of hadronic matrix elements of baryon number violating operators which appear in the low-energy effective Lagrangian of (SUSY-)Grand Unified Theories. The contribution of irrelevant form factor which has caused an underestimate of the matrix elements in previous studies is subtracted in this calculation. Our results are 2\sim4 times larger than the most conservative values often employed in phenomenological analyses of nucleon decay with specific GUT models.Comment: LATTICE99(matrixelements), 3 pages, 2 figure

    Scalar K pi form factor and light quark masses

    Get PDF
    Recent experimental improvements on K-decay data allow for a precise extraction of the strangeness-changing scalar K pi form factor and the related strange scalar spectral function. On the basis of this scalar as well as the corresponding pseudoscalar spectral function, the strange quark mass is determined to be m_s(2 GeV) = 92 +- 9 MeV. Further taking into account chiral perturbation theory mass ratios, the light up and down quark masses turn out to be m_u(2 GeV) = 2.7 +- 0.4 MeV as well as m_d(2 GeV) = 4.8 +- 0.5 MeV. As a by-product, we also find a value for the Cabibbo angle |V_{us}| = 0.2236(29) and the ratio of meson decay constants F_K/F_\pi = 1.203(16). Performing a global average of the strange mass by including extractions from other channels as well as lattice QCD results yields m_s(2 GeV) = 94 +- 6 MeV.Comment: 5 pages, 2 figures; comparison with lattice and global average added; version to appear in Phys. Rev.

    Kaon semileptonic decay (K_{l3}) form factors from the instanton vacuum

    Get PDF
    We investigate the kaon semileptonic decay (K_{l3}) form factors within the framework of the nonlocal chiral quark model from the instanton vacuum, taking into account the effects of flavor SU(3) symmetry breaking. We also consider the problem of gauge invariance arising from the momentum-dependent quark mass in the present work. All theoretical calculations are carried out without any adjustable parameter, the average instanton size (rho ~ 1/3 fm) and the inter-instanton distance (R ~ 1 fm) having been fixed. We also show that the present results satisfy the Callan-Treiman low-energy theorem as well as the Ademollo-Gatto theorem. Using the K_{l3} form factors, we evaluate relevant physical quantities. It turns out that the effects of flavor SU(3) symmetry breaking are essential in reproducing the kaon semileptonic form factors. The present results are in a good agreement with experiments, and are compatible with other model calculations.Comment: 12 pages, 3 figures, submitted to PR

    Resonant inelastic x-ray scattering in one-dimensional copper oxides

    Full text link
    The Cu K-edge resonant inelastic x-ray scattering (RIXS) spectrum in one-dimensional insulating cuprates is theoretically examined by using the exact diagonalization technique for the extended one-dimensional Hubbard model with nearest neighbor Coulomb interaction. We find the following characteristic features that can be detectable by RIXS experiments: (i) The spectrum with large momentum transfer indicates the formation of excitons, i.e., bound states of holon and doublon. (ii) The spectrum with small momentum transfer depends on the incident photon energy. We propose that the RIXS provides a unique opportunity to study the upper Hubbard band in one-dimensional cuprates.Comment: 3 pages with 4 figures, minor changes, to appear in Phys.Rev.
    corecore