1,612 research outputs found

    A new constant-pressure molecular dynamics method for finite system

    Full text link
    In this letter, by writing the volume as a function of coordinates of atoms, we present a new constant-pressure molecular dynamics method with parameters free. This method is specially appropriate for the finite system in which the periodic boundary condition does not exist. Simulations on the carbon nanotube and the Ni nanoparticle clearly demonstrate the validity of the method. By using this method, one can easily obtain the equation of states for the finite system under the external pressure.Comment: RevTex, 5 pages, 3 figures, submitted to Phys. Rev. Let

    DC-AC Cascaded H-Bridge Multilevel Boost Inverter with No Inductors for Electric/Hybrid Electric Vehicle Applications

    Get PDF
    This paper presents a cascaded H-bridge multilevel boost inverter for electric vehicle (EV) and hybrid EV (HEV) applications implemented without the use of inductors. Currently available power inverter systems for HEVs use a dc–dc boost converter to boost the battery voltage for a traditional three-phase inverter. The present HEV traction drive inverters have low power density, are expensive, and have low efficiency because they need a bulky inductor. A cascaded H-bridge multilevel boost inverter design for EV and HEV applications implemented without the use of inductors is proposed in this paper. Traditionally, each H-bridge needs a dc power supply. The proposed design uses a standard three-leg inverter (one leg for each phase) and an H-bridge in series with each inverter leg which uses a capacitor as the dc power source. A fundamental switching scheme is used to do modulation control and to produce a five-level phase voltage. Experiments show that the proposed dc–ac cascaded H-bridge multilevel boost inverter can output a boosted ac voltage without the use of inductors

    Fundamental Frequency Switching Strategies of a Seven-Level Hybrid Cascaded H-Bridge Multilevel Inverter

    Get PDF
    This paper presents a cascaded H-bridge multilevel inverter that can be implemented using only a single dc power source and capacitors. Standard cascaded multilevel inverters require n dc sources for 2n + 1 levels. Without requiring transformers, the scheme proposed here allows the use of a single dc power source (e.g., a battery or a fuel cell stack) with the remaining n − 1 dc sources being capacitors, which is referred to as hybrid cascaded H-bridge multilevel inverter (HCMLI) in this paper. It is shown that the inverter can simultaneously maintain the dc voltage level of the capacitors and choose a fundamental frequency switching pattern to produce a nearly sinusoidal output. HCMLI using only a single dc source for each phase is promising for high-power motor drive applications as it significantly decreases the number of required dc power supplies, provides high-quality output power due to its high number of output levels, and results in high conversion efficiency and low thermal stress as it uses a fundamental frequency switching scheme. This paper mainly discusses control of seven-level HCMLI with fundamental frequency switching control and how its modulation index range can be extended using triplen harmonic compensation

    Multiport Bidirectional SRM Drives for Solar-Assisted Hybrid Electric Bus Powertrain With Flexible Driving and Self-Charging Functions

    Get PDF
    The hybrid electric bus (HEB) presents an emerging solution to exhaust gas emissions in urban transport. This paper proposes a multiport bidirectional switched reluctance motor (SRM) drive for solar-assisted HEB (SHEB) powertrain, which not only improves the motoring performance, but also achieves flexible charging functions. To extend the driving miles and achieve self-charging ability, photovoltaic (PV) panels are installed on the bus to decrease the reliance on fuelsbatteries and charging stations. A bidirectional front-end circuit with a PV-fed circuit is designed to integrate electrical components into one converter. Six driving and five charging modes are achieved. The dc voltage is boosted by the battery in generator control unit (GCU) driving mode and by the charge capacitor in battery driving mode, where the torque capability is improved. Usually, an extra converter is needed to achieve battery charging. In this paper, the battery can be directly charged by the demagnetization current in GCU or PV driving mode, and can be quickly charged by the PV panels and GCUAC grids at SHEB standstill conditions, by utilizing the traction motor windings and integrated converter circuit, without external charging converters. Experiments on a three-phase 128 SRM confirm the effectiveness of the proposed drive and control scheme

    Validating the Commercially Available Garmin Fenix 5x Wrist-Worn Optical Sensor for Aerobic Capacity

    Get PDF
    Recreational exercisers continue to take a greater interest in monitoring their personal fitness levels. One of the more notable measurements that are monitored and estimated by wrist-worn tracking devices is maximum aerobic capacity (VO2max), which is currently the accepted measure of cardiorespiratory fitness. Traditional methods of obtaining VO2max present expensive barriers, whereas new wearable technology, such as of the Garmin Fenix 5x (GF5) provides a more cost-effective alternative. PURPOSE: To determine the validity of the GF5 VO2max estimation capabilities against the ParvoMedics TrueOne 2400 (PMT) metabolic measurement system in recreational runners. METHODS: Twenty-five recreational runners (17 male and 8 female) ages 18-55 participated in this study. Participants underwent two testing sessions: one consisting of the Bruce Protocol utilizing the PMT, while the other test incorporated the GF5 using the Garmin outdoor protocol. Both testing sessions were conducted within a few days of each other, with a minimum of 24 hours rest between sessions. RESULTS: The mean VO2max values for the PMT trial (49.1 ± 8.4 mL/kg/min) and estimation for the GF5 trial (47 ± 6.0 mL/kg/min) were found to be significantly different (t = 2.21, p = 0.037).   CONCLUSION: The average difference between the GF5 estimation and the PMT was 2.16 ml/kg/min.  Therefore, the watch is not as accurate compared to a PMT for obtaining VO2max.  However, although not statically significant, the proximity of scores to the PMT shows that the GF5 can be an option for a person seeking an affordable and easily available method of determining VO2max. &nbsp

    The Role of a Hot Gas Environment on the Evolution of Galaxies

    Full text link
    Most spiral galaxies are found in galaxy groups with low velocity dispersions; most E/S0 galaxies are found in galaxy groups with relatively high velocity dispersions. The mass of the hot gas we can observe in the E/S0 groups via their thermal X-ray emission is, on average, as much as the baryonic mass of the galaxies in these groups. By comparison, galaxy clusters have as much or more hot gas than stellar mass. Hot gas in S-rich groups, however, is of low enough temperature for its X-ray emission to suffer heavy absorption due to Galactic HI and related observational effects, and hence is hard to detect. We postulate that such lower temperature hot gas does exist in low velocity dispersion, S-rich groups, and explore the consequences of this assumption. For a wide range of metallicity and density, hot gas in S-rich groups can cool in far less than a Hubble time. If such gas exists and can cool, especially when interacting with HI in existing galaxies, then it can help link together a number of disparate observations, both Galactic and extragalactic, that are otherwise difficult to understand.Comment: 16 pages with one figure. ApJ Letters, in pres

    A Five-Level Three-Phase Hybrid Cascade Multilevel Inverter Using a Single DC Source for a PM Synchronous Motor Drive

    Get PDF
    The interest here is in using a single DC power source to construct a 3-phase 5-level cascade multilevel inverter to be used as a drive for a PM traction motor. The 5-level inverter consists of a standard 3-leg inverter (one leg for each phase) and an H-bridge in series with each inverter leg, which use a capacitor as a DC source. It is shown that one can simultaneously maintain the regulation of the capacitor voltage while achieving an output voltage waveform which is 25% higher than that obtained using a standard 3-leg inverter by itself

    Photorespiration: metabolic pathways and their role in stress protection

    Get PDF
    Photorespiration results from the oxygenase reaction catalysed by ribulose-1,5-bisphosphate carboxylase/ oxygenase. In this reaction glycollate-2-phosphate is produced and subsequently metabolized in the photorespiratory pathway to form the Calvin cycle intermediate glycerate-3-phosphate. During this metabolic process, CO2 and NH3 are produced and ATP and reducing equivalents are consumed, thus making photorespiration a wasteful process. However, precisely because of this ine¤ciency, photorespiration could serve as an energy sink preventing the overreduction of the photosynthetic electron transport chain and photoinhibition, especially under stress conditions that lead to reduced rates of photosynthetic CO2 assimilation. Furthermore, photorespiration provides metabolites for other metabolic processes, e.g. glycine for the synthesis of glutathione, which is also involved in stress protection. In this review, we describe the use of photorespiratory mutants to study the control and regulation of photorespiratory pathways. In addition, we discuss the possible role of photorespiration under stress conditions, such as drought, high salt concentrations and high light intensities encountered by alpine plants
    corecore