5,798 research outputs found

    A New Phase Time Formula for Opaque Barrier Tunneling

    Full text link
    After a brief review of the derivation of the standard phase time formula, based on the use of the stationary phase method, we propose, in the opaque limit, an alternative method to calculate the phase time. The new formula for the phase time is in excellent agreement with the numerical simulations and shows that for wave packets whose upper limit of the momentum distribution is very close to the barrier height, the transit time is proportional to the barrier width.Comment: 9 pages, 2 figure

    Self-organisation to criticality in a system without conservation law

    Full text link
    We numerically investigate the approach to the stationary state in the nonconservative Olami-Feder-Christensen (OFC) model for earthquakes. Starting from initially random configurations, we monitor the average earthquake size in different portions of the system as a function of time (the time is defined as the input energy per site in the system). We find that the process of self-organisation develops from the boundaries of the system and it is controlled by a dynamical critical exponent z~1.3 that appears to be universal over a range of dissipation levels of the local dynamics. We show moreover that the transient time of the system ttrt_{tr} scales with system size L as ttrLzt_{tr} \sim L^z. We argue that the (non-trivial) scaling of the transient time in the OFC model is associated to the establishment of long-range spatial correlations in the steady state.Comment: 10 pages, 6 figures; accepted for publication in Journal of Physics

    Setting Parameters for Biological Models With ANIMO

    Get PDF
    ANIMO (Analysis of Networks with Interactive MOdeling) is a software for modeling biological networks, such as e.g. signaling, metabolic or gene networks. An ANIMO model is essentially the sum of a network topology and a number of interaction parameters. The topology describes the interactions between biological entities in form of a graph, while the parameters determine the speed of occurrence of such interactions. When a mismatch is observed between the behavior of an ANIMO model and experimental data, we want to update the model so that it explains the new data. In general, the topology of a model can be expanded with new (known or hypothetical) nodes, and enables it to match experimental data. However, the unrestrained addition of new parts to a model causes two problems: models can become too complex too fast, to the point of being intractable, and too many parts marked as "hypothetical" or "not known" make a model unrealistic. Even if changing the topology is normally the easier task, these problems push us to try a better parameter fit as a first step, and resort to modifying the model topology only as a last resource. In this paper we show the support added in ANIMO to ease the task of expanding the knowledge on biological networks, concentrating in particular on the parameter settings

    Imaging outcome measures for progressive multiple sclerosis trials

    Get PDF
    Imaging markers that are reliable, reproducible and sensitive to neurodegenerative changes in progressive multiple sclerosis (MS) can enhance the development of new medications with a neuroprotective mode-of-action. Accordingly, in recent years, a considerable number of imaging biomarkers have been included in phase 2 and 3 clinical trials in primary and secondary progressive MS. Brain lesion count and volume are markers of inflammation and demyelination and are important outcomes even in progressive MS trials. Brain and, more recently, spinal cord atrophy are gaining relevance, considering their strong association with disability accrual; ongoing improvements in analysis methods will enhance their applicability in clinical trials, especially for cord atrophy. Advanced magnetic resonance imaging (MRI) techniques (e.g. magnetization transfer ratio (MTR), diffusion tensor imaging (DTI), spectroscopy) have been included in few trials so far and hold promise for the future, as they can reflect specific pathological changes targeted by neuroprotective treatments. Position emission tomography (PET) and optical coherence tomography have yet to be included. Applications, limitations and future perspectives of these techniques in clinical trials in progressive MS are discussed, with emphasis on measurement sensitivity, reliability and sample size calculation

    Substrate doping: A strategy for enhancing reactivity on gold nanocatalysts by tuning sp bands

    Get PDF
    We suggest that the reactivity of Au nanocatalysts can be greatly increased by doping the oxide substrate on which they are placed with an electron donor. To demonstrate this, we perform density functional theory calculations on a model system consisting of a 20-atom gold cluster placed on a MgO substrate doped with Al atoms. We show that not only does such substrate doping switch the morphology of the nanoparticles from the three-dimensional tetrahedral form to the two-dimensional planar form, but it also significantly lowers the barrier for oxygen dissociation by an amount proportional to the dopant concentration. At a doping level of 2.78%, the dissociation barrier is reduced by more than half, which corresponds to a speeding up of the oxygen dissociation rate by five orders of magnitude at room temperature. This arises from a lowering in energy of the s and p states of Au. The d states are also lowered in energy, however, this by itself would have tended to reduce reactivity. We propose that a suitable measure of the reactivity of Au nanoparticles is the difference in energy of sp and d states

    Otosclerosis associated with type B-1 inner ear malformation

    Get PDF
    Malformations of bony inner ear are rare anomalies occurring in approximately 20% of patients with congenital sensorineural hearing loss. Conductive hearing loss is usually associated with abnormalities of the external and middle ear. Recent reports of patients with lateral semicircular canal malformations indicate inner ear malformations to be associated with sensorineural or conductive hearing loss. Differential diagnosis of conductive hearing loss should include otosclerosis, isolated ossicular deformities, inner ear anomalies or a combination of these. In this report, a case is described with right vestibule-lateral semicircular canal dysplasia presenting at our centre with bilateral otosclerosis

    Nonlinear anisotropic dielectric metasurfaces for ultrafast nanophotonics

    Get PDF
    We report on the broadband transient optical response from anisotropic nanobrick amorphous silicon particles, exhibiting Mie-type resonances. A quantitative model is developed to identify and disentangle the three physical processes that govern the ultrafast changes of the nanobrick optical properties, namely two-photon absorption, free-carrier relaxation, and lattice heating. We reveal a set of operating windows where ultrafast all-optical modulation of transmission is achieved with full return to zero in 20 ps. This is made possible due to the interplay between the competing nonlinear processes and despite the slow (nanosecond) internal lattice dynamics. The observed ultrafast switching behavior can be independently engineered for both or- thogonal polarizations using the large anisotropy of nanobricks thus allowing ultrafast anisotropy control. Our results categorically ascertain the potential of all-dielectric resonant nanophotonics as a platform for ultrafast optical devices, and reveal the pos- sibility for ultrafast polarization-multiplexed displays and polarization rotators
    corecore