8,563 research outputs found

    XPS characterization of silver electrodes and catalyst for oxygen reduction

    Get PDF
    The combined analysis of the silver GDE using an ex-situ surface sensitive technique (XPS) and in-situ electrochemical measurements (EIS, CV) show that the performance of the silver GDE is significantly influenced by the degree of degradation of the electrodes, e. g., the reduction of the active surface due to the decomposition of the PTFE. These findings indicate a different degree of decomposition of the PTFE on the on the GDE

    Tunable multi-photon Rabi oscillations in an electronic spin system

    Full text link
    We report on multi-photon Rabi oscillations and controlled tuning of a multi-level system at room temperature (S=5/2 for Mn2+:MgO) in and out of a quasi-harmonic level configuration. The anisotropy is much smaller than the Zeeman splittings, such as the six level scheme shows only a small deviation from an equidistant diagram. This allows us to tune the spin dynamics by either compensating the cubic anisotropy with a precise static field orientation, or by microwave field intensity. Using the rotating frame approximation, the experiments are very well explained by both an analytical model and a generalized numerical model. The calculated multi-photon Rabi frequencies are in excellent agreement with the experimental data

    Multi-photon Rabi oscillations in high spin paramagnetic impurity

    Full text link
    We report on multiple photon monochromatic quantum oscillations (Rabi oscillations) observed by pulsed EPR (Electron Paramagnetic Resonance) of Mn2+^{2+} (S=5/2) impurities in MgO. We find that when the microwave magnetic field is similar or large than the anisotropy splitting, the Rabi oscillations have a spectrum made of many frequencies not predicted by the S=1/2 Rabi model. We show that these new frequencies come from multiple photon coherent manipulation of the multi-level spin impurity. We develop a model based on the crystal field theory and the rotating frame approximation, describing the observed phenomenon with a very good agreement.Comment: International Conference: Resonance in Condensed Matter Altshuler 10

    On Multilingual Training of Neural Dependency Parsers

    Full text link
    We show that a recently proposed neural dependency parser can be improved by joint training on multiple languages from the same family. The parser is implemented as a deep neural network whose only input is orthographic representations of words. In order to successfully parse, the network has to discover how linguistically relevant concepts can be inferred from word spellings. We analyze the representations of characters and words that are learned by the network to establish which properties of languages were accounted for. In particular we show that the parser has approximately learned to associate Latin characters with their Cyrillic counterparts and that it can group Polish and Russian words that have a similar grammatical function. Finally, we evaluate the parser on selected languages from the Universal Dependencies dataset and show that it is competitive with other recently proposed state-of-the art methods, while having a simple structure.Comment: preprint accepted into the TSD201

    Using Constructive Alignment to Support Metaliteracy in International Classrooms

    Get PDF
    This paper discusses strategies for promoting literacy and metaliteracy development in international and multicultural classrooms. Drawing on the first author’s observational research and the second author’s expertise in metaliteracy, we present a case study of international postgraduate students in an interdisciplinary department. The authors synthesize their different areas of work to describe how a fusion of metaliteracy, constructive alignment, and learning oriented assessments (LOA) facilitates student engagement with theories of knowledge organization and extensible markup language (XML) data-encoding standards. Our discussion describes curriculum design and redesign strategies and contextualizes observations about student success. The authors’ observations provide a basis for proposing methods for using metaliteracy to implement constructive alignment and LOA methods for promoting collaborative and truly diverse learning

    Random access quantum information processors

    Full text link
    Qubit connectivity is an important property of a quantum processor, with an ideal processor having random access -- the ability of arbitrary qubit pairs to interact directly. Here, we implement a random access superconducting quantum information processor, demonstrating universal operations on a nine-bit quantum memory, with a single transmon serving as the central processor. The quantum memory uses the eigenmodes of a linear array of coupled superconducting resonators. The memory bits are superpositions of vacuum and single-photon states, controlled by a single superconducting transmon coupled to the edge of the array. We selectively stimulate single-photon vacuum Rabi oscillations between the transmon and individual eigenmodes through parametric flux modulation of the transmon frequency, producing sidebands resonant with the modes. Utilizing these oscillations for state transfer, we perform a universal set of single- and two-qubit gates between arbitrary pairs of modes, using only the charge and flux bias of the transmon. Further, we prepare multimode entangled Bell and GHZ states of arbitrary modes. The fast and flexible control, achieved with efficient use of cryogenic resources and control electronics, in a scalable architecture compatible with state-of-the-art quantum memories is promising for quantum computation and simulation.Comment: 7 pages, 5 figures, supplementary information ancillary file, 21 page

    The rise of global policy networks in education: analyzing Twitter debates on inclusive education using social network analysis

    Get PDF
    With the Convention on the Rights of Persons with Disabilities (CRPD), inclusive education has become the main alternative to special schools for the schooling of children with disabilities. In order to promote the global implementation of inclusive education, a variety of stakeholders form networks to transmit and exchange information and knowledge concerning political strategies. However, little is known about the actors and actor groups involved in these networks. In the present paper, we draw on general network theory and policy network theory to examine the Twitter communication network that has formed around the topic of inclusive education. Using exploratory and inferential social network analysis, we show that disabled persons’ organizations and international organizations, such as the United Nations, hold a particularly central position in the network. This position enables them to potentially exert influence on the content and flow of information within the network. Aside from that, business actors are active participants in the network. Moreover, the Twitter network shows some structural patterns that can also be found in policy networks. Our findings help to map the global sphere of inclusive education promotion and can contribute to a broader understanding of global processes in inclusive education policy.info:eu-repo/semantics/acceptedVersio

    Normal-mode spectroscopy of a single bound atom-cavity system

    Full text link
    The energy-level structure of a single atom strongly coupled to the mode of a high-finesse optical cavity is investigated. The atom is stored in an intracavity dipole trap and cavity cooling is used to compensate for inevitable heating. Two well-resolved normal modes are observed both in the cavity transmission and the trap lifetime. The experiment is in good agreement with a Monte Carlo simulation, demonstrating our ability to localize the atom to within λ/10\lambda/10 at a cavity antinode.Comment: 4 pages, 4 figure
    corecore