6,305 research outputs found

    Limitations of Kramers-Kronig transform for calculation of the DC conductance magnitude from dielectric measurements

    Get PDF
    The Kramers-Kronig (K-K) transform relates the real and imaginary parts of the complex susceptibility as a consequence of the principle of causality. It is a special case of the Hilbert transform and it is often used for estimation of the DC conductance from dielectric measurements. In this work, the practical limitations of a numerical implementation of the Kramers-Kronig transform was investigated in the case of materials that exhibit both DC conductance and quasi-DC (QDC) charge transport processes such as epoxy resins. The characteristic feature of a QDC process is that the real and imaginary parts of susceptibility (permittivity) follow fractional power law dependences with frequency with the low frequency exponent approaching -1. Dipolar relaxation in solids on the other hand has a lower frequency exponent <1. The computational procedure proposed by Jonscher for calculation of the K-K transform involves extrapolation and truncation of the data to low frequencies so that convergence of the integrals is ensured. The validity of the analysis is demonstrated by performing K-K transformation on real experimental data and on theoretical data generated using the Dissado-Hill function. It has been found that the algorithm works well for dielectric relaxation responses but it is apparent that it does not work in the case of a low frequency power law in which the low frequency exponent approaches -1, i.e. in the case of QDC responses. In this case convergence can only be guaranteed by extrapolating the low frequency power law over many decades towards zero frequency

    Influence of the temperature on the dielectric properties of epoxy resins

    Get PDF
    Electrical degradation processes in epoxy resins, such as electrical treeing, were found to be dependent on the temperature at which the experiments were carried out. Therefore, it is of considerable research interest to study the influence of temperature on the dielectric properties of the polymers and to relate the effect of temperature on these properties to the possible electrical degradation mechanisms. In this work, the dielectric properties of two different epoxy resin systems have been characterized via dielectric spectroscopy. The epoxy resins used were bisphenol-A epoxy resins Araldite CY1301 and Araldite CY1311, the later being a modified version of the former with added plasticizer. The CY1301 samples were tested below and above their glass transition temperature, while the CY1311 were tested well above it. Both epoxy systems possess similar behaviour above the glass transition temperature, e.g. in a flexible state, which can be characterized as a low frequency dispersion (LFD). On the other hand, it was found that below the glass transition temperature CY1301 samples have almost “flat” dielectric response in the frequency range considered. The influence of possible interfacial features on the measured results is discussed

    Influence of absorbed moisture on the dielectric properties of epoxy resins

    Get PDF
    The dielectric response of two bisphenol-A epoxy resin systems Araldite CY1301 (Tg ~ 50°C) and Araldite CY1311 (Tg ~0°C) was studied at different levels of absorbed moisture. The dielectric measurements were carried out over the frequency range 1 mHz to 100 kHz and the results were characterised in terms of dc bulk electrical conduction and dielectric processes. The characteristic parameters (frequency and magnitude) of all processes have been found to be moisture dependent. In both resins above the glass transition temperature, absorbed moisture was found to be implicated in the formation of a bulk quasi-dc dielectric response consistent with cluster formation of the absorbed water molecules

    Energy Flow Puzzle of Soliton Ratchets

    Full text link
    We study the mechanism of directed energy transport for soliton ratchets. The energy flow appears due to the progressive motion of a soliton (kink) which is an energy carrier. However, the energy current formed by internal system deformations (the total field momentum) is zero. We solve the underlying puzzle by showing that the energy flow is realized via an {\it inhomogeneous} energy exchange between the system and the external ac driving. Internal kink modes are unambiguously shown to be crucial for that transport process to take place. We also discuss effects of spatial discretization and combination of ac and dc external drivings.Comment: 4 pages, 3 figures, submitted to PR

    PD pattern recognition using ANFIS

    Get PDF
    An application of an adaptive neuro-fuzzy inference system (ANFIS) has been investigated for partial discharge (PD) pattern recognition. The proposed classifier was used to discriminate between PD patterns occurring in internal voids. Three different void shapes were considered in this work, namely flat, square and narrow. Initially, the input feature vector used for classification was based on 15 statistical parameters. The discrimination capabilities of each feature were assessed by applying discriminant analysis. This analysis suggested that some of the features possess much higher discriminatory power than the others. As a result, a simplified classifier with reduced feature vector has been obtained. The results demonstrate the importance in identifying and removing redundancy in the input feature vector for reliable PD identification
    • …
    corecore