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    Abstract- The Kramers-Kronig (K-K) transform relates the 

real and imaginary parts of the complex susceptibility as a 

consequence of the principle of causality. It is a special case of the 

Hilbert transform and it is often used for estimation of the DC 

conductance from dielectric measurements. In this work, the 

practical limitations of a numerical implementation of the 

Kramers-Kronig transform was investigated in the case of 

materials that exhibit both DC conductance and quasi-DC (QDC) 

charge transport processes such as epoxy resins. The 

characteristic feature of a QDC process is that the real and 

imaginary parts of susceptibility (permittivity) follow fractional 

power law dependences with frequency with the low frequency 

exponent approaching -1. Dipolar relaxation in solids on the 

other hand has a lower frequency exponent <1. The 

computational procedure proposed by Jonscher for calculation of 

the K-K transform involves extrapolation and truncation of the 

data to low frequencies so that convergence of the integrals is 

ensured. The validity of the analysis is demonstrated by 

performing K-K transformation on real experimental data and 

on theoretical data generated using the Dissado-Hill function. It 

has been found that the algorithm works well for dielectric 

relaxation responses but it is apparent that it does not work in 

the case of a low frequency power law in which the low frequency 

exponent approaches -1, i.e. in the case of QDC responses. In this 

case convergence can only be guaranteed by extrapolating the 

low frequency power law over many decades towards zero 

frequency. 

 

I.    INTRODUCTION 

 

   When an ac electric field is applied to a dielectric, 

polarisation occurs inside the material which can be expressed 

by Eq. 1. 

       EP *

0  (1) 

where P(ω) is the frequency-dependent polarisation, ε0 is the 

permittivity of free space, χ*(ω) is the frequency-dependent 

susceptibility, and E(ω) is the applied ac electric field. P(ω)  

and E(ω) are the Fourier transforms of the corresponding 

time-dependent polarization and electric field. The frequency-

dependent susceptibility is a complex function and it is 

defined in Eq. 2 as the Fourier transform of the response 

function, f(t) [1]. 
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The response function, f(t), arises because material systems 

always exhibit a delayed response to an external excitation, 

unlike for example free space, where the response is 

instantaneous. The response function is a real function of time, 

t, and the principle of causality implies that there should be no 

reaction before action and hence: 

 

   0for  0  ttf  (3) 

 It is also assumed that f(t) obeys the principle of 

superposition, which states that the total response of the 

system, occurring due to a series of delta-function excitations,  

is the sum of the responses due to the individual  excitations 

[1]. Here it is important to emphasize that the response of the 

dielectric is assumed to be linear. 

   The amplitude of polarization in phase with the applied ac 

field is given by the real part, χ'(ω), of the complex 

susceptibility, χ*. The component in quadrature with the 

applied field is given by the imaginary part, χ''(ω). Hence, the 

real and imaginary components of χ* can be defined as the 

cosine and sine transforms of f(t), respectively: 
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Another condition is that the above integrals are necessarily 

finite [3]. The real and imaginary parts of the complex 

susceptibility obey the Kramer-Kronig relations as a 

consequence of the principle of causality and can be 

expressed: 
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Where P∫ denotes a Cauchy Principal Value integral. The 

Kramer-Kronig relations rely on the Hilbert transform of 

periodic functions, thus χ'(ω) and χ''(ω) are interrelated. The 

Hilbert transform of a constant is zero, so the presence in the 

measured spectrum of a DC conductivity can be recovered 

from the Kramers-Kronig transformation of the real part of 

ε'(ω) or χ'(ω), because a DC conductivity does not contribute 

to the real part of the permittivity.  However, dielectric 

measurements are performed only over a limited frequency 

range at discrete values of frequency, hence a numerical 

procedure is required to calculate the integrals given in Eqs. 6 

and 7. 



In this work, we have investigated a numerical algorithm 

previously proposed in the literature for calculation of the K-K 

transform on experimental data [2]. The aim was to assess the 

validity and the accuracy of the approach in the case of 

dielectric spectra containing QDC response. 
 

II.   NUMERICAL PROCEDURE 

 

    We have followed the numerical procedure described in [2]. 

The code of the computer program used for the calculations is 

given in [1]. Here is presented only a brief outline of the 

method. The procedure involved interpolation and 

extrapolation of the measurement data. In Fig. 1 are defined 

the parameters involved in the numerical procedure for a K-K 

transform. The dielectric data are measured (simulated) over 

the frequency range from f1 to fN. In order to calculate χ” using 

the K-K transform near the extremes of the range, it is 

necessary to extrapolate χ’ outside the range of measured 

frequencies to 0.1f1 and 10fN. The value of χ’(f)  is considered 

constant outside this frequency range, which results in the 

truncation region indicated in Fig. 1. In order to handle 

numerically the singularity that occurs at uf  , a low and a 

high frequency limit are defined around f, fu 8.01   and 

fu 25.12  , respectively. Dielectric data are usually acquired 

at logarithmically spaced frequency intervals. To apply simple 

methods  of integrations it is therefore necessary to interpolate 

between the points, which involves fitting exact parabolae to 

sets of three consecutive data points  (see Eq. 8) [2]. 

 

     CfBfAf  lnlnln
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  (8) 

 

A least squares straight line is used to fit to the first (or last) 

few data points on a ln χ versus ln ω plot using Eq. 9. 

 

   CfBf  lnln  (9) 

 

In the above expressions A, B, and C are constants determined 

from the data. 

The evaluation of the integral (6) near the singularity is 

handled using the following expression: 
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Simpson’s rule was used to evaluate the integrals with equal 

increments of ln(u). The number of increments was 50 per 

decade. An interpolating interval is the region in which a 

single interpolation equation is used. The following order was 

kept to perform the numerical integration over one interval (or 

part of an interval) at a time [2]: 

1. The remainder of the interval below u1 (=0.8f) 

2. The remainder of the interval above u2 (=1.25f) 

3. The rest of the intervals above f, stopping if an 

interval gives a negligible contribution 

4. The rest of the intervals below f, stopping if an 

interval gives a negligible contribution 

χ’(f) is assumed to take the end of range values outside the 

extrapolated frequency range. An extra contribution to the 

integral, which takes into account that χ’(f) is constant outside 

the frequency range, is calculated using the following 

expression: 
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Adding this to 2/π times the sum of all the other contributions 

gives χ”(f) [2]. 
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Fig. 1. A schematic diagram of the measured and extrapolated data 

(not to scale) 

 

 

III.   EXPERIMENTAL DATA 

 

  A typical dielectric spectrum of a DGEBA epoxy resin above 

the glass transition temperature is shown in Fig. 2. Such 

spectra were analyzed in [3, 4] using an equivalent circuit 

model.  The model comprised four processes in parallel, 

namely a frequency independent capacitance C∞, a DC 

conductance G, a QDC process and a dispersion D. The 

equivalent circuit model allows the individual contribution of 

each process to be determined and the two main contributions 

have been found to be due to a QDC process and a mid-

frequency dispersion D. Hence a K-K transform was 

performed on each of them individually and on the entire 

dielectric spectrum in order to assess the applicability of the 

numerical procedure described above in the case of materials 

exhibiting QDC behavior (also known as low frequency 

dispersion [1]). 

 



 
Fig. 2. A typical dielectric response of DGEBA epoxy resin above Tg.  

Real part (solid markers) and imaginary  part (open markers)  

 

IV.   RESULTS AND DISCUSSION 

 

A.    K-K transform in the case of a loss peak, D 

  Theoretical data were generated using the expression for a 

loss peak according to the Dissado-Hill theory [5]. The loss 

peak parameters were: magnitude 798 pF, low frequency 

parameter m=1, high frequency parameter n=0.146 and 

characteristic frequency fc=39 Hz. These values were chosen 

as typical values representing the dispersion process D shown 

in Fig. 2. The K-K transformation was performed on the 

theoretical data using the numerical procedure described 

above. The result is shown in Fig. 3. In this case, the overall 

accuracy of the method is satisfactory with most data points 

being transformed with accuracy better than 5%. The only 

exception was the points on the lowest frequency end of the 

spectrum, which were estimated with a significantly higher 

error. 

 
Fig. 3. K-K transform from real to imaginary part of complex capacitance in 

the case of a loss peak. Model real (solid circle markers) and imaginary (open 

circle markers), K-K calculated imaginary part (open triangle markers) 

 

B.     K-K transform in the case of QDC 

  Model data were generated using the theoretical expression 

for a QDC response according to the Dissado-Hill theory [6]. 

The characteristic parameters of the QDC process were: 

magnitude 326pF, low frequency parameter p=-0.952, high 

frequency parameter n=0.905, and characteristic frequency 

fc=1560Hz. These values were chosen as typical values 

representing the QDC process in flexible epoxy resins.  The 

K-K transformation was performed on these data using the 

same numerical procedure as before. The result is shown in 

Fig. 4. In this case, the result of the transform was quite poor 

because the values of the imaginary part of the capacitance 

were significantly underestimated.   The only points that were 

evaluated with a reasonable accuracy were in the last decade 

on the high frequency end of the spectrum. 

 
Fig. 4. K-K transform from real to imaginary part of complex capacitance in 

the case of QDC response. Model real (solid circle markers) and imaginary 

(open circle markers), K-K calculated imaginary part (open triangle markers) 

 

  The solid line in Fig. 4 shows the differences (residuals) 

between the theoretical values of the imaginary capacitance 

(C”) due to the QDC process and the values of C” calculated 

using the numerical K-K transform. This line approximately 

follows ω
-1

 dependence with frequency (with a slope -1 on a 

log-log scale.) In the literature such dependence of the 

residuals from the transform is often attributed to be due to a 

contribution from DC conductance [2, 7].  However in the 

present case it is important to emphasize that the model data 

shown in Fig. 4 and used for the K-K transform contain only 

one process, namely QDC, and no DC conductance was 

included in the model data.  Hence, the ω
-1 

dependence of the 

residuals is solely due to a truncation error occurring as a 

result of the numerical procedure used. This error occurs as a 

consequence of the extrapolation procedure used and was 

because χ' was assumed to be a constant outside the 

extrapolated frequency range. The influence of the 

extrapolation range was further investigated and an 

improvement in the procedure was sought by changing the 

value in Eq. 11 from only one decade below and above the 

lowest and highest frequency respectively, to many decades of 

frequency. The influence of the low frequency parameter p of 

the QDC process was also investigated. The results are 

summarized in Table 1. An extrapolation of 1 decade was not 

enough to obtain a sufficient accuracy in any of the cases. In 

the cases where the absolute value of the low frequency was 

smaller than 0.9, an extrapolation of 10 decades was sufficient 

to decrease the relative value of the computational error below 

2%. However, in the cases p was in the range -0.9 to -0.99 

(typical values for epoxy resin data) this had to be done over 

many more decades. In the extreme case where p=-0.99, even 



an extrapolation of 30 decades is not sufficient to provide 

accuracy better than 51%. 

 
TABLE I 

MAXIMUM VALUE OF THE RELATIVE ERROR AS A FUNCTION OF P 

AND EXTRAPOLATED FREQUENCY RANGE 

 Relative error, % 

 p 

-0.5 

p 

-0.6 

p 

-0.7 

p 

-0.8 

p 

-0.9 

p 

-0.95 

p 

-0.99 

1 decade 21% 28% 38% 52% 72% 85% 97% 

10 

decades 
<2% <1% <1% <2% 9% 33% 80% 

15 

decades 
<2% <1% <1% <1% 2% 19% 71% 

20 

decades 
<2% <1% <1% <1% <2% 11% 64% 

25 

decades 
<2% <1% <1% <1% <2% 6% 57% 

30 

decades 
<2% <1% <1% <2% <2% 3% 51% 

 
a) 1 decade extrapolation (solid line), 10 decades (dashed),  

15 decades (dotted), 20 decades (markers) 

 
b) From top to bottom: 1 decade extrapolation, 10 decades,  

15 decades, 20 decades, 25 decades and 30 decades 
 

Fig. 5: Residuals between the ‘true’ value of C” and the K-K transform as a 

function of frequency on a log-log plot; a) p=-0.9, b) p=-0.95 

 

In Fig 5 a) and b) are shown the residuals as a function of 

frequency on a log-log plot in the case of p=-0.9 and p=-0.95, 

respectively. In Fig. 5a the residuals form approximately 

straight lines with a slope ~ -1 in the case of extrapolation 

intervals of 1, 10 and 15 decades below 10kHz, which might 

be mistaken for DC conduction as explained before. The 

corresponding maximum relative errors from Table 1 are 72%, 

9% and 2%. The value of the relative error drops below 2% 

when the extrapolated interval is over 20 decades and the 

residuals (C”-C”KK) are no longer always positive but obtain 

negative (overestimated) values as well. This is indicated by 

the missing data markers in Fig.5a, since a logarithm of a 

negative value is not defined. In this case, the influence of the 

truncation error is greatly reduced and the small values of the 

residuals (positive and negative) can be explained by round off 

errors.  

For p=-0.95, however, the relative error is more than 3% in all 

cases, which results in a family of approximately straight lines 

parallel to each other for the various extrapolation intervals, 

respectively. Again the slopes of the lines are ~ -1 and can be 

mistaken for contributions to C” due to DC conduction.  

 

CONCLUSIONS 

 

  The applicability of a numerical Kramers-Kronig transform 

was investigated in two theoretical cases, namely a loss peak 

and a QDC process so that the mathematical procedure can be 

verified. In the former case, the shape of the loss peak was 

correctly reproduced by the K-K transformation with a small 

calculation error affecting only a few data points in the low 

frequency range. The error occurs as a consequence of the 

extrapolation procedure used and due to the fact that χ'(0) was 

assumed to be a constant over the extrapolated frequency 

range. However, in the case of a QDC process, a major 

truncation error was identified. The error was due to the 

limited frequency range originally used for data extrapolation.  

It has been found that the extrapolation must be performed 

over at least 10 decades of frequency, with the exact value 

being dependent on the low frequency parameter (p) of the 

QDC process. The study presented here outlines the 

computational difficulties of performing a numerical K-K 

transform over dielectric data containing QDC (low frequency 

dispersion) response and the limited use of this transform for 

calculating the DC conductivity in such materials. 
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