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    Abstract- An application of an adaptive neuro-fuzzy inference 
system (ANFIS) has been investigated for partial discharge (PD) 
pattern recognition. The proposed classifier was used to 
discriminate between PD patterns occurring in internal voids. 
Three different void shapes were considered in this work, namely 
flat, square and narrow. Initially, the input feature vector used 
for classification was based on 15 statistical parameters. The 
discrimination capabilities of each feature were assessed by 
applying discriminant analysis. This analysis suggested that some 
of the features possess much higher discriminatory power than 
the others. As a result, a simplified classifier with reduced feature 
vector has been obtained. The results demonstrate the 
importance in identifying and removing redundancy in the input 
feature vector for reliable PD identification. 
 

I.    INTRODUCTION 
 
   Partial discharges (PD), which can lead to both chemical and 
physical deterioration of the insulation systems, may occur in 
voids or gaps at interfaces within insulation subjected to high 
voltage stresses [1-3]. When discharges are detected and their 
magnitude measured, it is of considerable practical interest for 
reliable identification of insulation defects to be able to 
identify the source of the discharge, its shape, and location and 
also to be able to discriminate its pulse pattern from that of 
any external noise or other interference pulses. Therefore, 
discharge detection is important for the reliable evaluation of 
insulation systems and in recognizing defects in these 
components. Therefore, the trend towards automating 
detection and recognition in tests of cables, transformers and 
other insulating devices is evident: one of the undoubted 
advantages of a computer-aided measuring system is the 
ability to process a large amount of information and transform 
this information into an understandable output [4]. 

  Three different types of PD data patterns can be acquired 
from digital PD measurement systems during tests. They are: 
phase-resolved data, time-resolved data and data without 
phase or time information [15, 16]. The phase resolved data 
consists of a 3D discharge pattern: discharge magnitude ~ 
phase angle~ discharge rate ( nq ~~ ) at a specified test 

voltage. The time-resolved data constitutes the individual 
discharge pulse magnitudes over some interval of time, i.e. q ~ 
t data pattern. The last type of data consists of variations in 
discharge pulse magnitudes versus the amplitude of the test 
voltage V, i.e. q ~ V data pattern. 
   Generally, there are two essential components of all 
algorithms for pattern classification [5]. The first one is 
formation of so called Feature Vector or Fingerprint and the 
second one is pattern recognition phase (classification 
algorithm) itself. Over the last 15-20 years, several PD 
classification algorithms have been proposed and tested, 

including statistical tools, signal processing tools, image 
processing techniques, time-series analysis, fuzzy logic, 
artificial neural networks (ANN) and hybrid approaches, for 
both extraction of feature vector and classification [6-10].  
    In this paper, a novel method for recognition of the 
discharge source by means of an adaptive neuro-fuzzy 
inference system (ANFIS) is presented. The ANFIS uses a 
discharge fingerprint comprising 15 statistical parameters to 
discriminate between internal PD pulses. It is able to classify 
the PD pulses with respect to geometric parameters of the 
discharge source. 
Furthermore, the contribution of each feature to the 
classification is analyzed by discriminant analysis [11]. It 
shows that not all of the features have one and the same 
discriminatory power. In other words, some of the features can 
be neglected without a loss of accuracy and thus an ANFIS 
classifier with a simplified structure can be obtained. In this 
way, the total number of input features after the discriminant 
analysis was reduced to 6. Finally, the performance of the two 
classifiers is assessed. 
   

II.   DEFECT GEOMETRY AND TEST CONDITIONS 
   Three defects are studied, namely square, flat and narrow 
voids. These defects are gaseous inclusions in the electrical 
insulation. The differences between them are their geometric 
shape and size (see Table 1). 

 
TABLE I 

VOID GEOMETRIES AND THEIR TEST CONDITIONS 

Void type Diameter 
[mm] 

Height 
[mm] 

Square 1 1 
Flat 5 1 

Narrow 1 5 

   The electrode configuration is shown in Fig. 1 for samples 
with voids.  
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Fig. 1 Test set-up for samples with voids 
III.   STATISTICAL PARAMETERS DESCRIBING PARTIAL 

DISCHARGE DISTRIBUTIONS 
 

  Ninety samples were investigated and PD pulses were 
measured and recorded for all of them (30 samples for each 
type of the defects). The measurement data are phase-
resolved, which means that discharge magnitudes and 
discharge rates are recorded as a function of the phase angle of 
the test voltage. Two distributions are used to describe the PD 
pulses namely, mean pulse height distribution Hqn(φ) and 
pulse count distribution Hn(φ).  On their basis, 15 statistical 
parameters are calculated for each sample under investigation 
in accordance with [12]. These parameters are: 
 Sk (Hqn

+), Sk (Hqn
-) is the skewness of the mean pulse 

height distribution Hqn(φ) for the positive and  negative 
halves of the voltage cycle, respectively 

 Sk (Hn
+), Sk (Hn

-) - skewness of the pulse count 
distribution Hn(φ) for the positive and  negative halves of 
the voltage cycle, respectively 

 Ku (Hqn
+), Ku (Hqn

-) - kurtosis of the mean pulse height 
distribution Hqn(φ) for the positive and  negative halves of 
the voltage cycle, respectively 
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distribution Hn(φ) for the positive and  negative halves of 
the voltage cycle, respectively 

 Q – discharge asymmetry, 
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sQ  is the sum of the discharge magnitudes in the 

positive or negative half of the voltage cycle, and 
qN  is the 

number of discharges in the positive or in the negative half of 
the voltage cycle 
 cc – cross correlation factor,   
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where ix  is the mean discharge magnitude in a phase window 

in the positive half of the voltage cycle; iy  is the mean 

discharge magnitude in the corresponding phase window in 
the negative half of the voltage cycle and n is the number of 
phase positions per half cycle 
 mcc – modified cross-correlation factor, ccQmcc .  

 Pe (Hqn
+), Pe (Hqn

-) – number of peaks of the mean pulse 
height distribution Hqn(φ) for the positive and  negative 
halves of the voltage cycle, respectively 

Pe (Hn
+), Pe (Hn

-) - number of peaks of the pulse count 
distribution Hn(φ) for the positive and  negative halves of the 
voltage cycle, respectively. 
 

IV.   ANFIS CLASSIFIER 
A.    Initial Feature Vector 
  The initial input feature vector contains those statistical 
parameters described above. In order to create a classifier and 

to test the results obtained by it, the measurement data are split 
into two parts. The first one containing 22 samples per defect 
was used for generation of the ANFIS. The rest of the data (8 
samples per defect) were used to verify the performance of the 
corresponding ANFIS classifier. All calculations were 
performed using MATLAB. 
   A first order Sugeno-type system is implemented in the 
proposed model. The fuzzy inference system for the classifier 
is automatically generated using the subtractive clustering 
method [13, 14]. Clustering algorithm parameters are: range of 
influence, quash factor, accept ratio and reject ratio. The first 
parameter specifies the cluster center’s range of influence in 
each of the data dimensions, assuming that data belongs to a 
unit hyper-box. The second parameter is used to multiply the 
range of influence values that determine the neighborhood of a 
cluster center, so as to quash the potential for outlying points 
to be considered as part of that cluster. The next parameter 
determines the potential, as a fraction of the potential of the 
first cluster center, above which another data point will be 
accepted as a cluster center. The last parameter sets the 
potential, as a fraction of the potential of the first cluster, 
below which a data point will be rejected as a cluster center. 
The corresponding values of the above mentioned parameters 
are: 0.95, 1.25, 0.5 and 0.15, respectively.  
  The structure of ANFIS classifier is shown in Figure 2. There 
are 15 input neurons, corresponding to the 15 statistical 
parameters comprising the feature vector. The result of the 
classification process is presented by a single neuron in the 
output layer. In order to be obtained a crisp output, a weighted 
average method is used for defuzzification.  
  The assessment of the classifier is made on the basis of 
measurement data that has not been used for ANFIS training. 
24 samples (8 from each type of defect) were used to test the 
classifier. Only two samples (sample No. 20 and 24) were 
misclassified (See Table 2). In Table 2, the void types are 
coded as follows: 1 – square cavity, 2 – flat cavity, 3 – narrow 
cavity. The results show 91.7% classification accuracy. The 
conclusion that ANFIS classifier possesses very good 
classification capabilities can be drawn. Nevertheless, the 
structure of the classifier is quite complex and means for its 
simplification should be sought. 

 
TABLE II 

ANFIS CLASSIFIER RESULTS 
 

Sample No. 
Defect 
type 

ANFIS 
results Sample No. 

Defect 
type 

ANFIS 
results 

1 1 1 13 2 2 
2 1 1 14 2 2 
3 1 1 15 2 2 
4 1 1 16 2 2 
5 1 1 17 3 3 
6 1 1 18 3 3 
7 1 1 19 3 3 
8 1 1 20 3 2 
9 2 2 21 3 3 
10 2 2 22 3 3 
11 2 2 23 3 3 
12 2 2 24 3 2 



 

 
Fig. 2  Structure of the initial ANFIS classifier - 15 features  input vector 

 
B.   Application of Discriminant Analysis 
   The most common application of discriminant function 
analysis is to include many measures in the study, in order to 
determine the ones that discriminate between the groups. In 
the present study, it is applied to assess the discriminatory 
power of each feature. Computationally, discriminant function 
analysis is very similar to analysis of variance. The basic idea 
underlying discriminant function analysis is to determine 
whether groups differ with regard to the mean of a variable, 
and then to use that variable to predict group membership 
(e.g., of new cases). 
   In Table 3 is shown which variables were left in the model 
as a result of the discriminant function analysis. Wilks’ 
Lambda criterion is used to assess which features possess 
highest discriminatory power. The values of Wilks’ Lambda 
of the variables included in the new simplified model are 
given in Table 3 and the corresponding values of the variables 
not included in the model are given in Table 4. The value of 
Wilks’ Lambda is for the overall model that will result after 
removing the respective variable. It can assume values in the 
range of 0 (perfect discrimination) to 1 (no discrimination). 
The value of Partial Lambda is associated with the unique 
contribution of the respective variable to the discriminatory 
power of the model. F-to enter/remove values are associated 
with the respective partial Wilks’ Lambda. 

TABLE III 
VARIABLES INCLUDED IN THE MODEL 

 Wilks' 
Lambda 

Partial 
Lambda 

F-remove 

SkHqn+ 0.046655 0.793016 10.70133 
SkHqn- 0.056922 0.649985 22.07842 
SkHn+ 0.052897 0.699441 17.61822 
SkHn- 0.049993 0.740067 14.40036 
KuHn+ 0.049603 0.745892 13.96773 
Pe Hqn - 0.058129 0.636491 23.41572 

 
   The results of the discriminant function analysis suggest that 
there are some correlations between the features of the initial 
features vector. One obvious correlation is between modified 
cross-correlation factor (mcc) and discharge asymmetry (Q) 
and the cross-correlation factor (cc), because mcc is product of 
the other two. The presence of correlated input variables 

introduces redundancy of information and therefore increases 
the noise into the data. Primary task then is to eliminate all 
features which are not independent. The optimal classifier 
should possess only independent features into its input vector.  

 
TABLE IV 

VARIABLES NOT INCLUDED IN THE MODEL 

 
Wilks' 

Lambda 
Partial 

Lambda F-enter 

PeHqn + 0.035942 0.971460 1.189810 
PeHn + 0.035675 0.964230 1.502445 

mcc 0.033573 0.907427 4.131689 
Q 0.035950 0.971662 1.181149 

KuHqn+ 0.033880 0.915725 3.727255 
KuHqn- 0.033631 0.908991 4.054883 

cc 0.031610 0.854368 6.903462 
PeHn - 0.032032 0.865776 6.278834 
KuHn- 0.030180 0.815706 9.150215 

   
   On the basis of the above discussion a new ANFIS classifier 
was created, containing only the features, which were left after 
the discriminant analysis (see Table III). The same clustering 
algorithm was used to produce the ANFIS structure with the 
same values of the clustering algorithm parameters. The 
structure of this improved classifier is shown in Figure 3. It 
has 6 input neurons corresponding to the remaining 6 
statistical parameters in the discriminant function model 
(SkHqn+, SkHqn-, SkHn+, SkHn-, KuHn+, PeHqn -). In the 
second layer, there are 18 neurons, which correspond to 18 
Gaussian membership functions. The next layer contains only 
3 neurons equivalent to 3 fuzzy “if-then” rules. These rules 
represent 3 linear membership functions. The result of the 
classification process is presented by a single neuron in the 
output layer. In order to be obtained a crisp output, weighted 
average method is used for defuzzification. 
 
 
 

  
 

Fig. 3. Structure of the improved ANFIS classifier - 6 features  input vector 
   
  The assessment of the classifier is performed in a similar way 
as the previous one. The same 24 samples were used to test the 
classifier. This time only one sample (sample No. 16) was 
misclassified (See Table 5). In Table 5 the void types are 
coded as follows: 1 – square cavity, 2 – flat cavity, 3 – narrow 
cavity. The results show 95.8% classification accuracy, which 
is better than the previous case of a classifier having 15 input 

Rule Inputmf Input Outputmf Output 

Void type 

Rule Inputmf Input Outputmf Output 

Void type 

Sk Hqn + 

Sk Hqn - 

Sk Hn + 

Sk Hn - 

Ku Hn + 

Pe Hqn - 



features. The new classifier has not only a simplified structure 
but also possess better classification capabilities. The 
improved classification capability is due to the fact that the 
redundant information was removed. 
 

TABLE V 
RESULTS  FOR THE  IMPROVED ANFIS CLASSIFIER  

Sample No. 
Defect 
type 

ANFIS 
results Sample No. 

Defect 
type 

ANFIS 
results 

1 1 1 13 2 2 
2 1 1 14 2 2 
3 1 1 15 2 2 
4 1 1 16 2 1 
5 1 1 17 3 3 
6 1 1 18 3 3 
7 1 1 19 3 3 
8 1 1 20 3 3 
9 2 2 21 3 3 

10 2 2 22 3 3 
11 2 2 23 3 3 
12 2 2 24 3 3 

 
 

IV.   CONCLUSIONS 
 
The following conclusions can be drawn: 
•   The adaptive neuro-fuzzy inference system (ANFIS) can be 
used successfully to discriminate between PD pulses in voids 
with different geometries. 
•   Statistical parameters related to the PD patterns can be used 
as input features in such a classifier. However, care must be 
taken to ensure statistical independence of the features being 
used and any identified correlations between the different 
features, and hence the redundancy should be removed. 
Further research will be done to study the exact relations that 
may exist between these statistical parameters. 
•   Classifier performance can be improved and its structure 
can be simplified by discarding the redundant data. 
   The results demonstrate the importance in identifying and 
removing redundancy in the input feature vector for reliable 
PD identification. 
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