31 research outputs found
On residual finiteness of monoids, their Schützenberger groups and associated actions
RG was supported by an EPSRC Postdoctoral Fellowship EP/E043194/1 held at the University of St Andrews, Scotland.In this paper we discuss connections between the following properties: (RFM) residual finiteness of a monoid M ; (RFSG) residual finiteness of Schützenberger groups of M ; and (RFRL) residual finiteness of the natural actions of M on its Green's R- and L-classes. The general question is whether (RFM) implies (RFSG) and/or (RFRL), and vice versa. We consider these questions in all the possible combinations of the following situations: M is an arbitrary monoid; M is an arbitrary regular monoid; every J-class of M has finitely many R- and L-classes; M has finitely many left and right ideals. In each case we obtain complete answers, which are summarised in a table.PostprintPeer reviewe
Growth rates for subclasses of Av(321)
Pattern classes which avoid 321 and other patterns are shown to have the same growth rates as similar (but strictly larger) classes obtained by adding articulation points to any or all of the other patterns. The method of proof is to show that the elements of the latter classes can be represented as bounded merges of elements of the original class, and that the bounded merge construction does not change growth rates
On well quasi-order of graph classes under homomorphic image orderings
In this paper we consider the question of well quasi-order for classes defined by a single obstruction within the classes of all graphs, digraphs and tournaments, under the homomorphic image ordering (in both its standard and strong forms). The homomorphic image ordering was introduced by the authors in a previous paper and corresponds to the existence of a surjective homomorphism between two structures. We obtain complete characterisations in all cases except for graphs under the strong ordering, where some open questions remain.PostprintPeer reviewe
Ideals and finiteness conditions for subsemigroups
In this paper we consider a number of finiteness conditions for semigroups
related to their ideal structure, and ask whether such conditions are preserved
by sub- or supersemigroups with finite Rees or Green index. Specific properties
under consideration include stability, D=J and minimal conditions on ideals.Comment: 25 pages, revised according to referee's comments, to appear in
Glasgow Mathematical Journa
Properties of the subsemigroups of the bicyclic monoid
In this paper we study some properties of the subsemigroups of the bicyclic monoid B, by using a recent description of its subsemigroups. We start by giving necessary and sufficient conditions for a subsemigroup to be finitely generated. Then we show that all finitely generated subsemigroups are automatic and finitely presented. Finally we prove that a subsemigroup of B is residually finite if and only if it does not contain a copy of B.PostprintPeer reviewe
Automatic presentations and semigroup constructions
An automatic presentation for a relational structure is, informally, an abstract representation of the elements of that structure by means of a regular language such that the relations can all be recognized by finite automata. A structure admitting an automatic presentation is said to be FA-presentable. This paper studies the interaction of automatic presentations and certain semigroup constructions, namely: direct products, free products, finite Rees index extensions and subsemigroups, strong semilattices of semigroups, Rees matrix semigroups, Bruck-Reilly extensions, zero-direct unions, semidirect products, wreath products, ideals, and quotient semigroups. For each case, the closure of the class of FA-presentable semigroups under that construction is considered, as is the question of whether the FA-presentability of the semigroup obtained from such a construction implies the FA-presentability of the original semigroup[s]. Classifications are also given of the FA-presentable finitely generated Clifford semigroups, completely simple semigroups, and completely 0-simple semigroups.PostprintPeer reviewe
Green index in semigroups : generators, presentations and automatic structures
The Green index of a subsemigroup T of a semigroup S is given by counting strong orbits in the complement S n T under the natural actions of T on S via right and left multiplication. This partitions the complement S nT into T-relative H -classes, in the sense of Wallace, and with each such class there is a naturally associated group called the relative Schützenberger group. If the Rees index ΙS n TΙ is finite, T also has finite Green index in S. If S is a group and T a subgroup then T has finite Green index in S if and only if it has finite group index in S. Thus Green index provides a common generalisation of Rees index and group index. We prove a rewriting theorem which shows how generating sets for S may be used to obtain generating sets for T and the Schützenberger groups, and vice versa. We also give a method for constructing a presentation for S from given presentations of T and the Schützenberger groups. These results are then used to show that several important properties are preserved when passing to finite Green index subsemigroups or extensions, including: finite generation, solubility of the word problem, growth type, automaticity (for subsemigroups), finite presentability (for extensions) and finite Malcev presentability (in the case of group-embeddable semigroups).PostprintPeer reviewe
Substitution-closed pattern classes
The substitution closure of a pattern class is the class of all permutations obtained by repeated substitution. The principal pattern classes (those defined by a single restriction) whose substitution closure can be defined by a finite number of restrictions are classied by listing them as a set of explicit families.PostprintPeer reviewe
On generators and presentation of semidirect products in inverse semigroups
In this paper we prove two main results. The first is a necessary and sufficient condition for a semidirect product of a semilattice by a group to be finitely generated. The second result is a necessary and sufficient condition for such a semidirect product to be finitely presented
The insertion encoding of permutations
We introduce the insertion encoding, an encoding of finite permutations. Classes of permutations whose insertion encodings form a regular language are characterized. Some necessary conditions are provided for a class of permutations to have insertion encodings that form a context free language. Applications of the insertion encoding to the evaluation of generating functions for classes of permutations, construction of polynomial time algorithms for enumerating such classes, and the illustration of bijective equivalence between classes are demonstrated