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Abstract

In this paper we study some properties of the subsemigroups of the
bicyclic monoid B, by using a recent description of its subsemigroups. We
start by giving necessary and sufficient conditions for a subsemigroup to be
finitely generated. Then we show that all finitely generated subsemigroups
are automatic and finitely presented. Finally we prove that a subsemigroup

of B is residually finite if and only if it does not contain a copy of B.
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1 Introduction and Previous Relevant Results

The bicyclic monoid B, defined by the presentation (b,c | bc = 1), is one of the
most fundamental semigroups, with many remarkable properties and generaliza-
tions; see [1, 2, 5, 8,9, 12, 13, 15, 16].

In this paper we use the description of the subsemigroups of the bicyclic
monoid, obtained in [4], to establish some of their properties. We start by giving

necessary and sufficient conditions for a subsemigroup to be finitely generated
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Figure 1: The bicyclic monoid

(Section 2). Then we show that all finitely generated subsemigroups are auto-
matic and finitely presented (Sections 3, 4). Finally we prove that a subsemigroup
of B is residually finite if and only if it does not contain a copy of B (Section 5).

We begin by introducing the notation that will be used throughout the paper
and state some useful known results about the subsemigroups of B. From the
defining presentation for B it is easy to see that every element of B can be
expressed uniquely as ¢b’ with ¢, 5 > 0. In what follows we shall identify B with
the set {c'/ : 4,7 > 0}, and the multiplication then becomes:

A = CZ:_J.-ijbl ifj<k
AW > k.

It is often convenient to view B as an infinite square grid, as shown in Figure
1. The following three functions ®, ¥, A : B — Ny, ®(c't/) = i, U(c'V/) = j and
(W) = |j — 4| will be used extensively throughtout the paper. (® and ¥ are
the first and the second projections respectively, while A is the modulus of the
natural epimorphism from B onto the additive group Z.)

Let us now introduce some basic subsets of B:

D ={dV":i >0} — the diagonal , U ={c'¥ : j >i >0} — the upper half,
E,={cV :0<j<p,i>0}— the left strip (determined by p >0).,

Next, consider the function™: B — B by ¢t/ — bl = b, Geometrically
~ is the reflection with respect to the main diagonal. So, for example, U is the
lower half. Algebraically this function is an anti-isomorphism (zy = y7), as is
easy to check.

By using the above basic sets and functions we now define some further subsets
of B. For 0 < ¢ < p < m we define the triangle

Tq,p:{cibj3q§i§j<p};



and the strips

Sep ={cV 1 q<i<p,j=p}, Sy, ={cV :q<i<pj=>i},
Sq7p,m:{cibj:q§i<]7>j > m}.

Note that for ¢ = p the above sets are empty. For i,m > 0 and d > 0 we define

the lines
AZ:{CZb] .7 20}7 Az,m,d:{czb]d |]_27 jzm}

and, in general, for I C {0,...,m — 1},
Armag=Ucr Nima={cV :iel,d|j—1i,j>m}.
Forp>0,d>0,r€ld ={0,...,d—1} and P C [d] we define the squares

Ep _ {clb] . 27] > p}’ Zp,d,r — {cp+r+udbp+r+vd U, v > 0}7

Spap = Upep Spar = {PTHudpptrtvd e Pru,v > 0},

Figures illustrating some of these sets can be found in [4].

Finally, for X C B, we define «(X) = min(®(X NU)) (if X NU # 0) and
£(X) =min(U(X N D)) (if XN U £ 0).

We can now state the main result from [4], which gives a description of all

subsemigroups of the bicyclic monoid:

Proposition 1.1 ([4, Theorem 3.1]) Let S be a subsemigroup of the bicyclic

monoid. Then one of the following conditions holds:
1. S is a subset of the diagonal D.

2. S is a union of a subset of a triangle, a subset of the diagonal above the
triangle, a square below the triangle and some lines belonging to a strip
determined by square and the triangle, or the reflection of this union with
respect to the diagonal. Formally there exist q,p € Ng with g < p, d € N,
IC{q,....p—1}withqe I, PC{0,...,d—1} with0O € P, Fp CDNE,,
F CT,, such that S is of one of the following forms:

(’Z) S = FDUFUA],p7dUEp7d7P; or

(ii) S=FpUFUA;,qUS,qp.

8. There exist d € N, I C Ny, Fp C D N Eningry and sets S; € Ni;q (1 € 1)
such that S is of one of the following forms:



(i) S=FpU USi; or

el

(ii) S =Fp Ul JS:;

i€l

where each S; has the form
Si=F, UM\, a
for some m; € Ny and some finite set F;, and
I=IyU{r+ud:re€ R,ueNy,r+ud>N}

for some (possibly empty) R C {0,...,d—1}, some N € Ny and some finite
set I € {0,...,N —1}.

We call diagonal subsemigroups those satisfying 1, two-sided subsemigroups
those satisfying 2, upper subsemigroups those satisfying & (i) and lower subsemi-
groups those satisfying & (ii). Figures 2 and 3 illustrate the several kinds of

subsemigroups, by giving some examples.
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(a) d =3, Fp = {cb}, F = {¢*7}, (b) d =3, Fp = {1,2%}, p = 12,
I={4,5,7,8}, p=10, P = {0,1} F = {39, 5%}, P ={0,2},

I=1{3,56,809,11}

Figure 2: Two-sided subsemigroups

Observation 1.2 In the case where [ is finite (R = (), an upper subsemigroup

can be written as a union of two finite sets and finitely many lines all starting
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Fy = {c?, b1}, me = 20, Fo = {c°0'°}, mag = 20, Fig = {c'%0'}

Figure 3: Upper and lower subsemigroups



from the same column. Formally there exist ¢, p,m € Ny with ¢ < p < m, finite
sets I'p € DN Ey, FFCS; \Sypm and aset I C{q,...,p— 1} such that

S = FD U FUA],m,d-
A similar observation applies to a lower subsemigroup.
The following result, proved in [4], will also be needed:

Proposition 1.3 ([4, Lemma 4.3]) For any q,p € Ny with ¢ < p the sets
SepUXy, and S}, (q < p) are subsemigroups of the bicyclic monoid.

2 Finite generation

If A is a finite set, we denote by AT the free semigroup generated by A consisting
of non empty words over A under the concatenation, and by A* the free monoid
generated by A consisting of AT together with the empty word €. Let S be a
semigroup and ¢ : A — S a mapping. We say that A is a finite generating set for
S with respect to 1 if the unique extension of ¥ to a semigroup homomorphism
Y AT — S is surjective. For u,v € AT we write v = v to mean that u and v
are equal as words and u = v to mean that u and v represent the same element
in the semigroup i.e. that uy) = v.

In this section we will establish necessary and sufficient conditions for a sub-

semigroup of the bicyclic monoid to be finitely generated proving the following:

Theorem 2.1 Let S be a subsemigroup of the bicyclic monoid. Then S is finitely
generated if and only if one of the following conditions holds:

(i) S is a finite diagonal subsemigroup;

(ii) S is a two-sided subsemigroup;
(i11) S is an upper subsemigroup and the set {i € Ng: E; NS # 0} is finite;
(iv) S is a lower subsemigroup and the set {i € Ny : E NS 0} is finite.

PROOF. (i) Since c'b'c/t/ = c*bF, with k = max(i,j), a subsemigroup of the
bicyclic monoid contained in the diagonal only admits itself as a generating set,

and so it is finitely generated if and only if it is finite.



(i1) To prove that every two-sided subsemigroup S of B is finitely generated
it is sufficient to note that S can be expressed as a finite disjoint union of copies
of B and subsemigroups of Ny; see [4, Theorem 7.6]. Since each of these is finitely
generated, it follows that S is finitely generated as well.

For future use, we also give a direct proof of our claim, and in doing so
establish a natural finite generating set for S. Let ¢(S) = ¢ and k(S) = p and
let d = ged(A(S)). We can assume, without loss of generality, that ¢ < p. By
Theorem 1.1 we have

S=FpUFUX,apUAr,4

where F' and F are finite sets and I C {q,...,p — 1} for some ¢,p € Ny. For
every i € I let i + u;d = min{i + ud : i + ud > p}. We will prove that the finite
set

Y = {cbtid i e Ty U {PoPTe P U {eP T e € PY

generates the subsemigroup %, 4p U A7, 4. Indeed, for ¢'b™™*d € Ar, 4 we have

dpitud = cipitud(eppptdyu=ui while for (Prrudpptrtvd € 3 b we have
Cp-i—r—i—udbp—i—r—i-vd — (Cp+dbp)u(cp+rbp+r)(Cpbp+d)v.

Therefore the whole of S can be generated by the finite set Fp U FUY.
(111) We will prove that an upper semigroup S is finitely generated if and only
if the set
K={ieNy: E;NnS #0}

is finite. We first assume that K is infinite and prove that S is not finitely
generated. Suppose that there exists a finite set X such that S = (X). Since
X CSCUUD and X is finite, this implies X C Sj, for some p € Ny. Hence
S = (X) C S, because, by Proposition 1.3, Sj , is a subsemigroup, and therefore
K C{0,...,p} is finite, which contradicts our assumption. We conclude that S
is not finitely generated.

If we now assume that K is finite then to prove that S is finitely generated
it suffices to observe that S is a finite union of subsemigroups of the infinite
monogenic semigroup N (one in each line).

(1v) Straightforward consequence of (i) by using the anti-isomorphism ~. Bl



3 Automaticity

Given a finite set A, and a subset L of AT we say that L is regular if there is
a finite state automaton accepting it, and we say that L is rational if it can be
obtained from finite subsets of A* by finitely many applications of U (union), -
(concatenation) and * (Klenne’s star operation). It is well known that notions of
‘regular’ and ‘rational’ coincide and we use them as synonyms. To be able to deal
with automata that accept pairs of words and to define automatic semigroups we
need to define a new alphabet A(2,$) = (AU{$}) x (AU{$}))\{($,9)} where $
is a symbol not in A (called the padding symbol) and the function d4 : A* x A* —
A(2,%)* defined by

€ it0=m=n
(a1,01) ... (am,bm) if0<m=n
(a1,b1) .. (A, b)) (8, bmgr) - (8, 0,) f0<m<n
(a1,b1) ... (an,by)(an+1, %) ... (@, $) if m>n>0.

(al...am,bl...bn)(SA:

Let S be a semigroup and let A be a finite generating set for S with respect to
Y AT — S. The pair (A, L) is an automatic structure for S (with respect to 1)
if

e [ is a regular subset of AT and Ly = S,
o I_={(a,0):a,0 € L,aa=[3}I4 is regular in A(2,$)", and
o L,={(a,):,0 € L,aa = B}, is regular in A(2,$)" for each a € A,

where, as before, & = [ means that o and [ represent the same element in S
(i.e. arp = (). We say that a semigroup is automatic if it has an automatic
structure. For a more detailed introduction see [3].

If (A, L) is an automatic structure for a semigroup S then there is an automatic
structure (A, K) such that each element of S has a unique representative in K (see
[3, Proposition 5.4]); we say that (A, K) is an automatic structure with uniqueness
and that K is a set of unique normal forms for S.

In this section we will consider automaticity of the subsemigroups of the bi-

cyclic monoid and our main result is the following:

Theorem 3.1 All finitely generated subsemigroups of the bicyclic monoid are

automatic.



A finitely generated subsemigroup of B is a finite union of subsemigroups of
N and copies of B. However, it is not known whether a finite union of automatic
semigroups is necessarily automatic. Hence we need to devise a direct proof of

Theorem 3.1. A major ingredient is the following general result from [6]:

Proposition 3.2 ([6, Theorem 1.1]) Let S be a semigroup and let T be a
subsemigroup of S such that the set S\T is finite. Then S is automatic if and

only if T is automatic.
This result will be combined with the following:

Lemma 3.3 For any numbers p,m € Ny with p < m, d € N and sets I C
{0,...,p—1}, P C{0,...,d— 1} such that 0 € P, each of the following subsets
of the bicyclic monoid is automatic whenever it is a subsemigroup:

—

(1) Armas (19) Arm.d;
(i1i) EpapUArpa;  (iv) XpapUApa

PROOF. We observe that although the the semigroups (i) and (iv) are obtained
from (i) and (i) respectively by using the anti-isomorphism ~, our notion of
automatic structure involves multiplication on the right and so we cannot just
apply ~ to obtain the latter automatic structures and we need to prove each
of the four cases separately. (In [7], four alternative definitions of automatic
semigroup are studied, that correspond to the use of right or left multiplication
and to the use of the padding symbol on the right or on the left. These definitions
are equivalent when applied to groups but, as shown in [7], they are completely
independent for semigroups.)

(1) Let i +w;d = min{i+ud : i +ud > m} for i € I. Fixing iy € I and u = w;,
we define the alphabet

A= J{AG0), . MG u— 1)}

iel
and the homomorphism
F oA = Apmai MG g) = b0,

Defining
L= JUUJAAG 5)AGGo, 0)" - n > 0})

iel =0



it is clear that L is a regular language and we will show that it is a set of unique
normal forms for S' = A;,, 4. Given s € S we can write s = At witk)d for some
1 € I and k > 0. Dividing k& by u we obtain £k = nu+j withn >0and 0 < j < u
and hence the unique word in L representing s is the word (i, j)A(4p,0)™. To
prove that the pair (A, L) is an automatic structure for S we only have to show

that the languages
Ly = {(wy,w2)d : wi,we € Lywi Ak, 1) = ws}
are regular for every A(k,l) € A. We can write
)\(i,j))\(io, O)n)\<k> l) _ cibi+(ui+j)d+nudckbk+(uk+l)d _ cibi+(ui+j+uk+l)d+nud

and dividing j+wux 4! by u we obtain j+ui+[! = qu+r withg>0and 0 <7r < u

and so we have
(i, §) Ao, 0)"A(k, 1) = o Hrndrintarud — X(j )\ (ig, 0)" 9, (1)

where w = s with w € A*,s € S means that w represents the element s (i.e.

wf = s). Therefore we have

u—1
Ly = J(U Yasis)

i€l j=0

where

Yk,l,i,j = { (A(laj)/\@Oa O)n7 )‘(7’7 T))\(io, 0)n+q)5 :
up+j+l=qu+r0<r <umn>0}
Each set Y}, ; is regular because the numbers ¢ and r are uniquely determined

by the fixed numbers k,[,7 and j, and we have

Yiig = LAE5), A, 7))} - {(Ado, 0), Ado, 0)) }* - { (€, A(i0,0)?)d}.

Hence Ly, is regular.
(i1) We define w; (i € I), ip, u and the alphabet A as in the proof of (i) but

now our homomorphism is
f A S, A(Z,]) — CiJr(uiJrj)dbi

and our regular language is

I = U(U{)\(io,O)”)\(z’,j) :n > 0}),

iel j=0

10



—_—
where S = Ar,, 4. Again, L is a set of unique normal forms for .S, since we have

A(ig, 0)"A(i, j) = ¢ Hwtdd+mudpi and we will prove that the languages
Ly = {(wr,w2)d 1 wi,we € Lywi Ak, 1) = wo}
are regular for every A(k,l) € A. We can write
)\(io, 0)")\(i,j))\(k, l) _ C'Hr(u¢+j)d+nudbick+(uk+l)dbk _ Ck+(uk+j+ui+l)d+nudbk

and dividing 7 4+u; +1 by v we obtain j4+u; +1 = qu+r with¢ > 0and 0 <r < u

and so we have
Ao, 0)" (i, j)A(k, 1) = FHlusndtlatnudyl — (i, 0)TA(k, 7).

Therefore we have

Lges) = User (USZod (Aio, 0)"A(4, 5), A(io, 0)" A (k, 7))6 -
w+j+l=qu+r0<r<un>0}

which is a finite union of regular languages and so is regular.
(117) Let Z = AU{z,y} UT, where A={\;:i €I} and ' = {~, : r € P}, be
an alphabet and define

L= U({)\lx“ cu>0})U U({y”%x“ tu,v > 0}),
icl reP
which is a regular subset of ZT. We are going to prove that (Z, L) is an automatic
structure (with uniqueness) for the semigroup S =%, 4 p U As, 4 with respect to

f:Z" =8 N\ 6T A s PTTRPET s (PP y s PP

where ¢ + u;d = min{i + ud : i + ud > p} for i € 1.
To show that each element in S has a unique representative in L it suffices to

observe that
Nt = Cibi-i-(ui—i-u)d (Z c I; u > O), YUyt = cprrtvdpptr+ud (7” c P; u,v > O)

Therefore we only have to show that that languages L, = {(wy,w2)d : wy,wq €
L,wyz = wy} are regular for every z € Z. We will first consider the case where
z =M\ € A. Since U((\a")f), V((y"vx*)f) > p >t =P(\f) we have

Ly, = U{(/\ix“, AN TS cu > 0 U U{(y"%x“, Y ezt v > 0}

el reP

11



which is a regular language. We will now consider z = 7, € I". Since for u > 0
we have U((A\z*) f), V((y"v-a*)f) > p+d > P(1f) we have

Ly, =Uie (L, Mix™)d :u > 0} U {( N, w)0 - w € L, \iyy = w})U
Urer({" iz, yPya)d 1 v > 0,u > 0} U Ly, 1)
where
Loy = {{@u%,yuma w0} ifr >
7 {(W" Y, y"v¢)0 : u > 0} otherwise.
We note that, for each i € I, the set {(\;,w)d : w € L, \jy; = w} has only one
element because L is a set of unique normal forms for .S, and so the language L,
is a finite union of regular languages and therefore it is regular. The language L,

is clearly regular since we have L, = {(w,wx)d : w € L}. Finally, we have

Ly =Uie,({(Niz", Nz ™1)é 1 u > 0 U{(Ai, w)d tw € L, Ay = w})U
U,ep({(y° 7z, y° 5218 s v > 0,u > 0} U {(y"7, ¥ 0) - v > 0})

because, for v > 0, we have
(yu%)y — (Cp+r+vdbp+r>(cp+dbp) — Cp+(v+l)dbp _ va’Yo-

Again, for each i € I, the set {(\;,w)d : w € L, \jy = w} is regular because it has
only one element and so L, is also a finite union of regular languages and hence
is regular. We conclude that S is automatic.

(iv) We define the alphabet Z as in the proof of (777) and our regular language

over Z1 is now
L=J{y'N:v=0h)uJHy va" w0 > 0}).
el repP

We are going to prove that (Z, L) is an automatic structure (with uniqueness)

for the semigroup S =X, 4p U A/];i with respect to
f:Z7 =8 N T A s PTTPET g s POPTE gy s PTRP

again with i + u;d = min{i + ud : i + ud > p} for i € I.
It is again clear that L is a set of unique normal forms for S and we will show
that the languages L, = {(wy,w3)d : wy,ws € L, wyz = wy} are regular for every

z € Z. We start by showing that, for any \; € A, we have

Ly, =Uie A" X, g7 A)0 - v > 0}U
UreP({(yU’yTxuv yv,yrxu—uz)é Y Z 07 u Z ut} U L()\t,T)U
Uut—l (yv,yrxu7 yv+Ut—u—uk)\k)5 cu > 07 k= p+r+ (U — ut>d})

u=1

12



where

Loy = LGP0 0 2 O} i pr St ued
- LWy, y? T AL)d k= p + 1 — wd} otherwise.

We have

y”>\i)\t = cz-i—ul'd-‘rvdbzct-i-utdbt — ct-i-utd-i-(v-‘rui)dbt _ yv—I—ui A

If u > u; then

yv,yrxu)\t — CP+T+UdbP+T+UdCt+Utdbt — Cp+r+vdbp+r+(u7ut)d — yvfyrxufut )

Foru e {1,...,u; — 1} we define k = p+r + (u — u;)d and we have

W= yv,yrl,u/\t — Cp+r+vdbp+r+udct+utdbt — Cp+r+vdbp+r+(u7ut)d

_ Ck+(v+ut7u)dbk: _ Ck+ukd+(v+ut7ufuk)dbk‘

Since S is a semigroup and k < p we have w € /\/1;1 and therefore, observing
the definition of wuy, it must be v + u; — u — up > 0 and we can write w =
yUtuemu—ue N, We will now consider the multiplication of a word of the form g,
by A\ and so we define w = y’y,\; = P Hvdpprttudpt If p 4 <t + wud then
w = ctudtvdpt — o, If p+ 7 > t + u,d we have w = cPHrtvdpptr—ud - e
observe that u; > 0 because ¢t < p and t + u;d > p and therefore w € A/[;l.

Hence, defining k = p + r — w;d we can write

w = Ck+(v+ut)dbk — CkJruder('quutfuk)dbk

and, from the definition of uy, it follows that v 4+ u; — ux, > 0 and so we have
w =y’ "\ We conclude that Ly, can be defined as a finite union of regular
languages and so it is a regular language.

It is easy to see that

L% :Uiel{(yv)‘i’yv+ui7t>5 S Z 0} U L(’th)
UTEP{(yv7T$u7yUWTxu)5 tu > 07U 2 0}
where

@y <0} it r > ¢
o {(W" v, y"7)0 : v > 0} otherwise

and so it is a regular language. The language L, is regular because we have

L, = U{(y”)\i,y“i”fygx)(S cv >0} U U{(y”%x“,y”%x““ﬁ tu,v >0}

el repP

13



and since

Ly =Use A (" Ni, g7+ )0 v > 03U
Urep({ (W' ma, y"yat =10 s 0 2 0,u > 0} U{(y" v, 4" 190)0 s v 2 0})

L, is a regular language as well. We conclude that (Z, L) is an automatic struc-
ture for S. |

ProOF OF THEOREM 3.1 We know from the previous section that any
finitely generated subsemigroup is either a finite subset of the diagonal, and so it

is automatic, or it has one of the forms:

FpUFUA;pqUSap, FoUFUR;,qUS,ap,
FpUFUArq, FpUFUAL4

where I C {q,q+1,...,p— 1} for some numbers ¢,p € Ny and the sets F' and Fp
are finite. In each case we can remove the finite set F')pUF from our subsemigroup
and we still have a subsemigroup, because we are in fact intersecting it with the
set Sqp U Xy, which by Proposition 1.1 is itself a subsemigroup. Hence every
finitely generated subsemigroup S of B has a subsemigroup U such that S\U is
finite and that, by the previous lemma, is automatic. It follows from Proposition
1.3 that S is automatic as well. |

4 Finite presentability

Let A be an alphabet and let R C AT x A" be a relation on AT™. We say that
the semigroup S is defined by the presentation (A | R) if S is generated by A
with respect to a mapping v» : A — S, and the kernel of the extension of
to a homomorphism At — S is the smallest congruence p containing R. In this
case, of course, we have S = A" /p. Given a presentation (A | R), for two words
w,z € AT we write w —* z, and say that w = z is a consequence of R (or that
the word w can be reduced to z by applying relations from R), to mean that either
w = v or that there is a sequence a words w = wy, wo, . .., w, = v where for each
i =1,...,n— 1 we can write w; = ou;3;, wiy1 = o;u;3; for some «;, 3; € A*
and (u;,v;) € R or (v;,u;) € R. It is then well known that the relation w = z
holds in S (i.e. wy = zv) if and only if it is a consequence of R. Moreover, given
a semigroup S generated by a set A and a set R C AT x A" the pair (A | R)

14



is a presentation for S if and only if S satisfies all relations from R and any
other relation that holds in S is a consequence of R. We will use the following

straightforward consequence of this fact:

Proposition 4.1 Let S be a semigroup generated by a set A, let R C AT x AT
and let L C AT be a set of unique normal forms for S. If the following conditions
hold:

(i) S satisfies all the relations from R; and

(i) any word w € AT can be reduced to the corresponding unique normal form

in L by using relations from R;

then (A | R) is a presentation for S.

We say that a semigroup S is finitely presented if there is a presentation (A | R)
for S where both A and R are finite sets. For further details about semigroup
presentations we refer the reader to [10].

In the previous section Proposition 3.2 allowed us to remove finite subsets
from the semigroups when considering automaticity. We have a similar result for

finite presentability, proved in [14]:

Proposition 4.2 ([14, Theorem 1.3]) Let S be a semigroup and T be a sub-
semigroup of S such that S\T is finite. Then S is finitely presented if and only
if T is finitely presented.

Our main result of this section is the following:

Theorem 4.3 All finitely generated subsemigroups of the bicyclic monoid are

finitely presented.
The main work on the proof of Theorem 4.3 is contained in the following:

Lemma 4.4 For any numbers p,m € Ny with p < m, d € N and sets I C
{0,...,p—1}, P C{0,...,d— 1} such that 0 € P, each of the following subsets

of B is finitely presented whenever it is a subsemigroup:

(Z) AI,m,d; (ZZ) AI,p,d U Ep,d,P-
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PROOF. (i) We consider the automatic structure (A, L) obtained in the proof of
Lemma 3.3 (i), which gives us a finite generating set and a set of unique normal
forms for A;,, 4. We are going to prove that < A | R > is a finite presentation

for T', where R consists of the following relations:

A, Ak, 1) = A4, 7)A(dg, 0)? where j4+up+1l=qu+r, 0<r<u
(t,kel,j,l€{0,...,u—1}).

That the relations hold follows from equation (1), in the proof of Lemma 3.3.
We are going to show that any word w € A™ can be reduced to a word in L by
applying relations from R, using induction on the length |w| of the word w. If
|lw| = 1 then w € L by definition of L. If |w| = 2 then w = A(¢,j)A(k,[) and

therefore
w =" A4, 7)A\(i,0) € L, j+ur+1l=qu+r (0<r <u),

using one relation from R. Let n > 2 and suppose that any word w such that
|w| < n can be reduced to a word in L by using relations from R. Let w € A™
with |w| =n+ 1. We have w = A(i1,71) - . - AMin, Jn) A(int1, Jns1). We can reduce
A2, Jn)A(ins1, Jni1) Obtaining

w —" )\(ihjl) s )‘(in—lvjn—l))\@m T))\(ioa O)q

where

Jn + Uiy +Jnr1 =qu+1 (0 <r <w).

Letting w' = A(i1,j1) - - A(fn_1, Jn—1)A(in, ) Wwe have |w’| = n and, using the
induction hypothesis, we have w' —* (i, j)\(ip,0)™ € L for some i € I, j €
{0,...,u— 1}, m € Ny, implying w —* A(, 7)A(4p, 0)™ "9 € L.

(11) We will use the automatic structure (Z, L) obtained in the proof of Lemma
3.3 (i) to prove that T'= %, 4 p U Ay, 4 is finitely presented. We will show that
< Z | R > is a finite presentation for 7', defining R to be the following set of

relations:
= oL (2)
Y= Y% (3)
ANidj =Nz (3,5 € 1) (4)
)\ =zt (i el) (5)
yhi = yz (i € 1) (6)
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Y Ni =zt (r € Pyie ) (7)

Yy = T (8)
Ay= A (tel,u;>1,j=p+d—uqd) (9)
Ny= v @elu=1) (10)
wy= y (reP) (11)
vy, = x (re€PpP) (12)
Nive= N (iel,rePit+ud>p+r) (13)
Nivr= A (iel,rePi+wd<p+r,j=p+r—ud) (14)
Y=y (r=t) (15)
Y= n (r<t) (16)

To see that any of these relations holds we just have to prove that both sides
of it correspond to the same word in {c't’ : i,5 > 0}. We will only prove that
relations (9), (10), (13) and (14) hold since for the others this is straightforward.

To prove that relations (9) and (10) hold we observe that, by definition of w;,
we have \;y = cibitwdeptdpp = cptd—widpp If ¢, = 1 then \jy = PP = ~ and
relation (10) holds. If w; > 1 then p+d —u;d < p and so, defining j = p+d — u;d,
we have \jy = b+ @=Dd ¢ A, But we have j + (u; — 1)d = p which implies,
by definition of w;, that u; — 1 = u; which means that \;y = A; and relation (9)
holds as well.

To prove that relations (13) and (14) hold we start by writing

)\i’yr —_ Ci biJruidcerr prrr ]

If i +u;d > p+ 7 then Ay, = b4 = )\; and relation (13) holds. Otherwise
we have Ay, = Pt 4dpptr € Ap o because u; > 0. Defining j = p + r — u;d we
have A\, = ¢/b/T%? and, since j + u;d = p +r < p + d and using the definition
of uj, we must have u; = u;, which implies \;7, = A; and relation (14) holds as
well.

We are now going to prove that any word in w € Z* can be reduced to a
word in L, using our relations, by induction on the length of w. If |w| = 1 then
either w € L or it can be reduced to a word in L by using one of the relations (2)
or (3). We now consider words of length 2. The word A\;\; reduces to \;z" € L
using relation (4); Az € L; Ay either reduces to 79 € L using relation (10) or
to A; € L for some j using relation (9); Ay, reduces to \; € L for some j using

relations (13) or (14); zx reduces to yyx® € L using (2); zy reduces to vy € L
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using relation (8); x); reduces to yx't% € L using relations (5) and (2); v,
reduces to yor € L using relations (12) and (2); yx reduces to yyoxr € L using
(2); yy reduces to y*yy € L using (3); y\; reduces to yyox® € L using (6) and
(3); yy: € L; vix € L; vy reduces to yy € L using (11) and (3); v, A¢ reduces to
vix' € L using (7); finally 7, reduces to 7; € L for some j using (15) or (16).

In the following induction step we use that fact that if a word w belongs to
L then wa™ belongs to L as well for any n € Ny, which follows immediately from
the definition of L. Let n > 2 and suppose that all words w € Z* with |w| < n
can be reduced to a word in L. Let w € ZT be a word of length n 4+ 1. Then
we have w = wyg1go with w; € Z1 and ¢;, 9, € Z. We will consider all possible
pairs of generators g1, g2 € Z and prove that in every case w reduces to a word
in L using the relations.

Case 1: g1g2 € { Ny, \ve, ©Y, TV, Yy, Vevi - In these cases we can apply one
of the relations to reduce g;g- to a generator g. We can then apply the induction
hypothesis to reduce w;g to a word in L.

Case 2: g1go = ¢g1x. In these cases we can reduce wig; to a word wy € L
using the induction hypothesis and so we can reduce w to wyx € L.

Case 3: g1g2 = A\iA. Using relation (4) we have w —* wi ;2" and, since
|wy ;| = n, using the induction hypothesis we have wy \; —* wy € L and therefore
w —* wex™ € L.

Case 4: g1g2 = xXs. Using relation (5) we have w —* wx!™. Since |w| < n,
using the hypothesis we can write w; —* wy € L and so w —* wx!t —*
wor!t € L.

Case 5: g1go = y\;. Using relation (6) we reduce y); to yz*. We can
then apply the induction hypothesis to wyy to obtain w;y —* we € L implying
w —* wez™ € L.

Case 6: g1g2 = yy. We start by reducing wyy to a word ws € L using the
induction hypothesis. We can have wy = \jz" or wy = y*vy,.2%. If we = A; then
w —* \;y and applying relations (9) or (10) it reduces to a word in L. If wy = Nz
then w —* \jxy —* Ao by applying relation (8). Therefore by applying now

relations (13) or (14), w reduces to word in L. If wy = \jz* with u > 1 then
w —* Ny = \at 2y —F et e L,
by applying relations (8) and (12). If wy = y"~, then

w—" Yy = yly =y € L,
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using relations (11) and (3). If wy = y¥y,2 then w —* y’y,2y and we can apply
relation (8) to reduce xy to 7y. Then we can reduce 7,7, to v, by applying relation
(15) and so w —* y'~, € L. We can have wy = y"y,z"* with v > 1 and then

w ="yt T ey ="y et = ytyat T € L

by applying relations (8) and (12).

Case 7: g19o = yvy;. We start again by reducing wyy to a word wy € L. We can
have wy = Az or wy = y'y,.2%. If we = A; then w —* \;y and applying relation
(9) or relation (10) we can reduce w to a generator that belongs to L. If wy = A2
with u > 0 then we can apply relation (12) giving w —* \z'y, —* \a* € L.
If wy = y¥v, then w —* y’y, and so applying relations (15) or (16) we have
w —*y'g € L with g € {v,,v}. Finally, if wy = y"v,2"* with « > 0 then we have
w —* yyaty, —* yUy.x* € L by applying relation (12).

Case 8: ¢192 = v\ Applying relation (7) we get v\, —* 2. Since
|w1:| < n, using the hypothesis, we have wy; —* wy € L and so w —* wyz™ €
L. [

PrROOF OF THEOREM 4.3 We know from Section 1 that any finitely gener-
ated subsemigroup is either a finite subset of the diagonal, and so it is finitely

presented, or it has one of the forms:

FpUFUA;,qUSap, FoUFUR;,qUS,ap,
FpUFUAp4, FpUFUAL4

where I C {q,q+ 1,...,p — 1} for some numbers ¢,p € Ny and the sets F' and
Fp are finite. Without loss of generality we may consider only subsemigroups of
the form

FpUFUArpaUXpap, FpUFUAMA,q

(the other two are anti-isomorphic to them). In both cases we can remove the
finite set Fip UF from our subsemigroup and we still have a subsemigroup. Hence,
in both cases, our subsemigroup S has a subsemigroup U such that S\U is finite
and which, by Lemma 4.4, is finitely presented. It follows from Proposition 4.2
that .S is finitely presented as well. [ |
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5 Residual finiteness

We say that a semigroup S is residually finite if, for any two elements sq, so € .S,
there is a finite semigroup F' and a homomorphism ¢ : S — F' that separates s;
and sy (such that s;¢ # sy¢). We have the following:

Theorem 5.1 A subsemigroup of the bicyclic monoid B is residually finite if and

only if it is not two-sided.

ProOF. We first show that a two-sided semigroup is not residually finite. In fact,
a two-sided semigroup S contains a subset of the form X = {PTudpptvd: o v > 0},
which is isomorphic to the bicyclic monoid; the mapping v : B — X;c*’ +—
cPrudppted i clearly an isomorphism. Since B is not residually finite (see [11]) it
follows that S is not residually finite either.

We will now show that a subsemigroup S contained in U (an upper semigroup
or a subset of the diagonal) is residually finite. Let o = ¢'b’ and 8 = ¢*b! be two
arbitrary elements of S. Taking p > max(j,) the set S, = S NI, is an ideal of
S. Hence the Rees homomorphism ¢ : S — (S\S,) U {0} separates o and 3, and
S\S, U{0} is finite, since S\S, C Tp,. Analogously, any subsemigroup contained
in U is residually finite. [

This theorem has the following equivalent formulation:

Theorem 5.2 A subsemigroup of the bicyclic monoid B is residually finite if and

only if it does not contain a copy of B.
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