1,112 research outputs found

    Merged Two-Stage Power Converter With Soft Charging Switched-Capacitor Stage in 180 nm CMOS

    Get PDF
    In this paper, we introduce a merged two-stage dc-dc power converter for low-voltage power delivery. By separating the transformation and regulation function of a dc-dc power converter into two stages, both large voltage transformation and high switching frequency can be achieved. We show how the switched-capacitor stage can operate under soft charging conditions by suitable control and integration (merging) of the two stages. This mode of operation enables improved efficiency and/or power density in the switched-capacitor stage. A 5-to-1 V, 0.8 W integrated dc-dc converter has been developed in 180 nm CMOS. The converter achieves a peak efficiency of 81%, with a regulation stage switching frequency of 10 MHz.Interconnect Focus Center (United States. Defense Advanced Research Projects Agency and Semiconductor Research Corporation

    Submodule Integrated Distributed Maximum Power Point Tracking for Solar Photovoltaic Applications

    Get PDF
    This paper explores the benefits of distributed power electronics in solar photovoltaic applications through the use of submodule integrated maximum power point trackers (MPPT). We propose a system architecture that provides a substantial increase in captured energy during partial shading conditions, while at the same time enabling significant overall cost reductions. This is achieved through direct integration of miniature MPPT power converters into existing junction boxes. We describe the design and implementation of a high-efficiency (>;98%) synchronous buck MPPT converter, along with digital control techniques that ensure both local and global maximum power extraction. Through detailed experimental measurements under real-world conditions, we verify the increase in energy capture and quantify the benefits of the architecture.National Science Foundation (U.S.) (Grant 0925147

    Does physical activity moderate the association between alcohol drinking and all-cause, cancer and cardiovascular diseases mortality risk? A pooled analysis of eight British population cohorts

    Get PDF
    OBJECTIVE: To examine whether physical activity (PA) moderates the association between alcohol intake and all-cause mortality, cancer mortality and cardiovascular diseases (CVDs) mortality. DESIGN: Prospective study using 8 British population-based surveys, each linked to cause-specific mortality: Health Survey for England (1994, 1998, 1999, 2003, 2004 and 2006) and Scottish Health Survey (1998 and 2003). PARTICIPANTS: 36 370 men and women aged 40 years and over were included with a corresponding 5735 deaths and a mean of 353 049 person-years of follow-up. EXPOSURES: 6 sex-specific categories of alcohol intake (UK units/week) were defined: (1) never drunk; (2) ex-drinkers; (3) occasional drinkers; (4) within guidelines (35 (women) >49 (men)). PA was categorised as inactive (≤7 MET-hour/week), active at the lower (>7.5 MET-hour/week) and upper (>15 MET-hour/week) of recommended levels. MAIN OUTCOMES AND MEASURES: Cox proportional-hazard models were used to examine associations between alcohol consumption and all-cause, cancer and CVD mortality risk after adjusting for several confounders. Stratified analyses were performed to evaluate mortality risks within each PA stratum. RESULTS: We found a direct association between alcohol consumption and cancer mortality risk starting from drinking within guidelines (HR (95% CI) hazardous drinking: 1.40 (1.11 to 1.78)). Stratified analyses showed that the association between alcohol intake and mortality risk was attenuated (all-cause) or nearly nullified (cancer) among individuals who met the PA recommendations (HR (95% CI)). CONCLUSIONS: Meeting the current PA public health recommendations offsets some of the cancer and all-cause mortality risk associated with alcohol drinking

    Scaling of solar wind e and the AU, AL and AE indices as seen by WIND

    Get PDF
    We apply the finite size scaling technique to quantify the statistical properties of fluctuations in AU, AL and AE indices and in the parameter that represents energy input from the solar wind into the magnetosphere. We find that the exponents needed to rescale the probability density functions (PDF) of the fluctuations are the same to within experimental error for all four quantities. This self-similarity persists for time scales up to ~4 hours for AU, AL and and up to ~2 hours for AE. Fluctuations on shorter time scales than these are found to have similar long-tailed (leptokurtic) PDF, consistent with an underlying turbulent process. These quantitative and model-independent results place important constraints on models for the coupled solar wind-magnetosphere system

    Use of Self-Selected Postures to Regulate Multi-Joint Stiffness During Unconstrained Tasks

    Get PDF
    The human motor system is highly redundant, having more kinematic degrees of freedom than necessary to complete a given task. Understanding how kinematic redundancies are utilized in different tasks remains a fundamental question in motor control. One possibility is that they can be used to tune the mechanical properties of a limb to the specific requirements of a task. For example, many tasks such as tool usage compromise arm stability along specific directions. These tasks only can be completed if the nervous system adapts the mechanical properties of the arm such that the arm, coupled to the tool, remains stable. The purpose of this study was to determine if posture selection is a critical component of endpoint stiffness regulation during unconstrained tasks.Three-dimensional (3D) estimates of endpoint stiffness were used to quantify limb mechanics. Most previous studies examining endpoint stiffness adaptation were completed in 2D using constrained postures to maintain a non-redundant mapping between joint angles and hand location. Our hypothesis was that during unconstrained conditions, subjects would select arm postures that matched endpoint stiffness to the functional requirements of the task. The hypothesis was tested during endpoint tracking tasks in which subjects interacted with unstable haptic environments, simulated using a 3D robotic manipulator. We found that arm posture had a significant effect on endpoint tracking accuracy and that subjects selected postures that improved tracking performance. For environments in which arm posture had a large effect on tracking accuracy, the self-selected postures oriented the direction of maximal endpoint stiffness towards the direction of the unstable haptic environment.These results demonstrate how changes in arm posture can have a dramatic effect on task performance and suggest that postural selection is a fundamental mechanism by which kinematic redundancies can be exploited to regulate arm stiffness in unconstrained tasks

    Coronal mass ejections, magnetic clouds, and relativistic magnetospheric electron events: ISTP

    Get PDF
    The role of high-speed solar wind streams in driving relativistic electron acceleration within the Earth\u27s magnetosphere during solar activity minimum conditions has been well documented. The rising phase of the new solar activity cycle (cycle 23) commenced in 1996, and there have recently been a number of coronal mass ejections (CMEs) and related “magnetic clouds” at 1 AU. As these CME/cloud systems interact with the Earth\u27s magnetosphere, some events produce substantial enhancements in the magnetospheric energetic particle population while others do not. This paper compares and contrasts relativistic electron signatures observed by the POLAR, SAMPEX, Highly Elliptical Orbit, and geostationary orbit spacecraft during two magnetic cloud events: May 27–29, 1996, and January 10–11, 1997. Sequences were observed in each case in which the interplanetary magnetic field was first strongly southward and then rotated northward. In both cases, there were large solar wind density enhancements toward the end of the cloud passage at 1 AU. Strong energetic electron acceleration was observed in the January event, but not in the May event. The relative geoeffectiveness for these two cases is assessed, and it is concluded that large induced electric fields (∂B/∂t) caused in situ acceleration of electrons throughout the outer radiation zone during the January 1997 event

    A comprehensive map of the mTOR signaling network

    Get PDF
    The mammalian target of rapamycin (mTOR) is a central regulator of cell growth and proliferation. mTOR signaling is frequently dysregulated in oncogenic cells, and thus an attractive target for anticancer therapy. Using CellDesigner, a modeling support software for graphical notation, we present herein a comprehensive map of the mTOR signaling network, which includes 964 species connected by 777 reactions. The map complies with both the systems biology markup language (SBML) and graphical notation (SBGN) for computational analysis and graphical representation, respectively. As captured in the mTOR map, we review and discuss our current understanding of the mTOR signaling network and highlight the impact of mTOR feedback and crosstalk regulations on drug-based cancer therapy. This map is available on the Payao platform, a Web 2.0 based community-wide interactive process for creating more accurate and information-rich databases. Thus, this comprehensive map of the mTOR network will serve as a tool to facilitate systems-level study of up-to-date mTOR network components and signaling events toward the discovery of novel regulatory processes and therapeutic strategies for cancer

    Investigation of catalysis by bacterial RNase P via LNA and other modifications at the scissile phosphodiester

    Get PDF
    We analyzed cleavage of precursor tRNAs with an LNA, 2′-OCH3, 2′-H or 2′-F modification at the canonical (c0) site by bacterial RNase P. We infer that the major function of the 2′-substituent at nt −1 during substrate ground state binding is to accept an H-bond. Cleavage of the LNA substrate at the c0 site by Escherichia coli RNase P RNA demonstrated that the transition state for cleavage can in principle be achieved with a locked C3′ -endo ribose and without the H-bond donor function of the 2′-substituent. LNA and 2′-OCH3 suppressed processing at the major aberrant m−1 site; instead, the m+1 (nt +1/+2) site was utilized. For the LNA variant, parallel pathways leading to cleavage at the c0 and m+1 sites had different pH profiles, with a higher Mg2+ requirement for c0 versus m+1 cleavage. The strong catalytic defect for LNA and 2′-OCH3 supports a model where the extra methylene (LNA) or methyl group (2′-OCH3) causes a steric interference with a nearby bound catalytic Mg2+ during its recoordination on the way to the transition state for cleavage. The presence of the protein cofactor suppressed the ground state binding defects, but not the catalytic defects
    corecore