7,387 research outputs found
Dynamical Behavior of a stochastic SIRS epidemic model
In this paper we study the Kernack - MacKendrick model under telegraph noise.
The telegraph noise switches at random between two SIRS models. We give out
conditions for the persistence of the disease and the stability of a disease
free equilibrium. We show that the asymptotic behavior highly depends on the
value of a threshold which is calculated from the intensities of
switching between environmental states, the total size of the population as
well as the parameters of both SIRS systems. According to the value of
, the system can globally tend towards an endemic case or a disease
free case. The aim of this work is also to describe completely the omega-limit
set of all positive solutions to the model. Moreover, the attraction of the
omega-limit set and the stationary distribution of solutions will be pointed
out.Comment: 16 page
Pairing effect on the giant dipole resonance width at low temperature
The width of the giant dipole resonance (GDR) at finite temperature T in
Sn-120 is calculated within the Phonon Damping Model including the neutron
thermal pairing gap determined from the modified BCS theory. It is shown that
the effect of thermal pairing causes a smaller GDR width at T below 2 MeV as
compared to the one obtained neglecting pairing. This improves significantly
the agreement between theory and experiment including the most recent data
point at T = 1 MeV.Comment: 8 pages, 5 figures to be published in Physical Review
Damping of giant dipole resonance in hot rotating nuclei
The phonon damping model (PDM) is extended to include the effect of angular
momentum at finite temperature. The model is applied to the study of damping of
giant dipole resonance (GDR) in hot and noncollectively rotating spherical
nuclei. The numerical results obtained for Mo88 and Sn106 show that the GDR
width increases with both temperature T and angular momentum M. At T > 4 MeV
and M<= 60 hbar the increase in the GDR width slows down for Sn106, whereas at
M<= 80 hbar the GDR widths in both nuclei nearly saturate. By adopting the
nuclear shear viscosity extracted from fission data at T= 0, it is shown that
the maximal value of the angular momentum for Mo88 and Sn106 should be around
46 and 55 hbar, respectively, so that the universal conjecture for the lower
bound of the specific shear viscosity for all fluids is not violated up to T= 5
MeV.Comment: 19 pages, 6 figures, accepted in Phys. Rev.
RPA vs. exact shell-model correlation energies
The random phase approximation (RPA) builds in correlations left out by
mean-field theory. In full 0-hbar-omega shell-model spaces we calculate the
Hartree-Fock + RPA binding energy, and compare it to exact diagonalization. We
find that in general HF+RPA gives a very good approximation to the ``exact''
ground state energy. In those cases where RPA is less satisfactory, however,
there is no obvious correlation with properties of the HF state, such as
deformation or overlap with the exact ground state wavefunction.Comment: 6 pages, 7 figures, submitted to Phys Rev
Solubility isotope effects in aqueous solutions of methane
The isotope effect on the Henry's law coefficients of methane in
aqueous solution (H/D and C-12/C-13 substitution) are interpreted using
the statistical mechanical theory of condensed phase isotope effects.
The missing spectroscopic data needed for the implementation of the
theory were obtained either experimentally (infrared measurements), by
computer simulation (molecular dynamics technique), or estimated using
the Wilson's GF matrix method. The order of magnitude and sign of both
solute isotope effects can be predicted by the theory. Even a crude
estimation based on data from previous vapor pressure isotope effect
studies of pure methane at low temperature can explain the inverse
effect found for the solubility of deuterated methane in water. (C)
2002 American Institute of Physics
Phenotypic Screening of Drought-Tolerant Lines for Brown Planthopper, Blast and Phytic Acid Content Assay of Rice (Oryza sativa L.)
Advanced drought tolerant lines were analysed for blast disease, brown planthopper (BPH), and phytic acid content. Thirsty lines of BC2F4 derived from OMCS2000/ IR75499-73-1 were used to screen for BPH and blast resistance. Three good resistant lines were screened against blast (45, 54, and 310) under greenhouse condition. As eight lines were identified to be resistant to BPH. The results further reveal that BC2F4-45 was the best line resistant to both BPH and blast disease. These lines will be useful in reducing grain phytic acid and improving the nutritional value of rice grain. Based on an assay for high phosphate germination stage of rice, the lowest content was found in the I5 variety (line 45). Hence, this line provides the urgent objective for breeders in cultivars of these crops to genetically enhance a healthy and functional diet. These characters will then need to be incorporated into high yield under drought stress with others such as disease and insect resistance
Recommended from our members
Osteocyte dysfunction promotes osteoarthritis through MMP13-dependent suppression of subchondral bone homeostasis.
Osteoarthritis (OA), long considered a primary disorder of articular cartilage, is commonly associated with subchondral bone sclerosis. However, the cellular mechanisms responsible for changes to subchondral bone in OA, and the extent to which these changes are drivers of or a secondary reaction to cartilage degeneration, remain unclear. In knee joints from human patients with end-stage OA, we found evidence of profound defects in osteocyte function. Suppression of osteocyte perilacunar/canalicular remodeling (PLR) was most severe in the medial compartment of OA subchondral bone, with lower protease expression, diminished canalicular networks, and disorganized and hypermineralized extracellular matrix. As a step toward evaluating the causality of PLR suppression in OA, we ablated the PLR enzyme MMP13 in osteocytes while leaving chondrocytic MMP13 intact, using Cre recombinase driven by the 9.6-kb DMP1 promoter. Not only did osteocytic MMP13 deficiency suppress PLR in cortical and subchondral bone, but it also compromised cartilage. Even in the absence of injury, osteocytic MMP13 deficiency was sufficient to reduce cartilage proteoglycan content, change chondrocyte production of collagen II, aggrecan, and MMP13, and increase the incidence of cartilage lesions, consistent with early OA. Thus, in humans and mice, defects in PLR coincide with cartilage defects. Osteocyte-derived MMP13 emerges as a critical regulator of cartilage homeostasis, likely via its effects on PLR. Together, these findings implicate osteocytes in bone-cartilage crosstalk in the joint and suggest a causal role for suppressed perilacunar/canalicular remodeling in osteoarthritis
- …
