542 research outputs found

    The role of long-range forces in the phase behavior of colloids and proteins

    Full text link
    The phase behavior of colloid-polymer mixtures, and of solutions of globular proteins, is often interpreted in terms of a simple model of hard spheres with short-ranged attraction. While such a model yields a qualitative understanding of the generic phase diagrams of both colloids and proteins, it fails to capture one important difference: the model predicts fluid-fluid phase separation in the metastable regime below the freezing curve. Such demixing has been observed for globular proteins, but for colloids it appears to be pre-empted by the appearance of a gel. In this paper, we study the effect of additional long-range attractions on the phase behavior of spheres with short-ranged attraction. We find that such attractions can shift the (metastable) fluid-fluid critical point out of the gel region. As this metastable critical point may be important for crystal nucleation, our results suggest that long-ranged attractive forces may play an important role in the crystallization of globular proteins. However, in colloids, where refractive index matching is often used to switch off long-ranged dispersion forces, gelation is likely to inhibit phase separation.Comment: EURO-LATEX, 6 pages, 2 figure

    Three-Dimensional Simulations of Mixing Instabilities in Supernova Explosions

    Full text link
    We present the first three-dimensional (3D) simulations of the large-scale mixing that takes place in the shock-heated stellar layers ejected in the explosion of a 15.5 solar-mass blue supergiant star. The outgoing supernova shock is followed from its launch by neutrino heating until it breaks out from the stellar surface more than two hours after the core collapse. Violent convective overturn in the post-shock layer causes the explosion to start with significant asphericity, which triggers the growth of Rayleigh-Taylor (RT) instabilities at the composition interfaces of the exploding star. Deep inward mixing of hydrogen (H) is found as well as fast-moving, metal-rich clumps penetrating with high velocities far into the H-envelope of the star as observed, e.g., in the case of SN 1987A. Also individual clumps containing a sizeable fraction of the ejected iron-group elements (up to several 0.001 solar masses) are obtained in some models. The metal core of the progenitor is partially turned over with Ni-dominated fingers overtaking oxygen-rich bullets and both Ni and O moving well ahead of the material from the carbon layer. Comparing with corresponding 2D (axially symmetric) calculations, we determine the growth of the RT fingers to be faster, the deceleration of the dense metal-carrying clumps in the He and H layers to be reduced, the asymptotic clump velocities in the H-shell to be higher (up to ~4500 km/s for the considered progenitor and an explosion energy of 10^{51} ergs, instead of <2000 km/s in 2D), and the outward radial mixing of heavy elements and inward mixing of hydrogen to be more efficient in 3D than in 2D. We present a simple argument that explains these results as a consequence of the different action of drag forces on moving objects in the two geometries. (abridged)Comment: 15 pages, 8 figures, 30 eps files; significantly extended and more figures added after referee comments; accepted by The Astrophysical Journa

    Thin Ice Target for 16^{16}O(p,p') experiment

    Full text link
    A windowless and self-supporting ice target is described. An ice sheet with a thickness of 29.7 mg/cm2^2 cooled by liquid nitrogen was placed at the target position of a magnetic spectrometer and worked stably in the 16^{16}O(p,p)(p,p') experiment at Ep=392E_{p}=392 MeV. Background-free spectra were obtained.Comment: 14 pages, 4 figures, Nucl. Instr. & Meth. A (in press

    Anomalous Spin Dynamics observed by High Frequency ESR in Honeycomb Lattice Antiferromagnet InCu2/3V1/3O3

    Full text link
    High-frequency ESR results on the S=1/2 Heisenberg hexagonal antiferromagnet InCu2/3V1/3O3 are reported. This compound appears to be a rare model substance for the honeycomb lattice antiferromagnet with very weak interlayer couplings. The high-temperature magnetic susceptibility can be interpreted by the S=1/2 honeycomb lattice antiferromagnet, and it shows a magnetic-order-like anomaly at TN=38 K. Although, the resonance field of our high-frequency ESR shows the typical behavior of the antiferromagnetic resonance, the linewidth of our high-frequency ESR continues to increase below TN, while it tends to decrease as the temperature in a conventional three-dimensional antiferromagnet decreases. In general, a honeycomb lattice antiferromagnet is expected to show a simple antiferromagnetic order similar to that of a square lattice antiferromagnet theoretically because both antiferromagnets are bipartite lattices. However, we suggest that the observed anomalous spin dynamics below TN is the peculiar feature of the honeycomb lattice antiferromagnet that is not observed in the square lattice antiferromagnet.Comment: 5 pages, 5 figure

    Supramolecular assemblies involving metal organic ring interactions: Heterometallic Cu(II)-Ln(III) two dimensional coordination polymers

    Get PDF
    Three isostructural two-dimensional coordination polymers of the general formula [Ln2(CuL)3(H2O)9]$5.5H2O, where Ln is La (1), Nd (2), and Gd (3), have been synthesized and isolated from aqueous solutions and their single-crystal structures determined by X-ray diffraction. The supramolecular interaction between the non-aromatic metallorings plays an important role in stabilizing the structure of these compounds. The thermal stability, reversible solvent uptake, electronic properties and magnetic studies of these compounds are also reported

    Polarization transfer in the 16^{16}O(p,p)(p,p') reaction at forward angles and structure of the spin-dipole resonances

    Full text link
    Cross sections and polarization transfer observables in the 16^{16}O(p,p)(p,p') reactions at 392 MeV were measured at several angles between θlab=\theta_{lab}= 0^\circ and 14^\circ. The non-spin-flip (ΔS=0{\Delta}S=0) and spin-flip (ΔS=1{\Delta}S=1) strengths in transitions to several discrete states and broad resonances in 16^{16}O were extracted using a model-independent method. The giant resonances in the energy region of Ex=19E_x=19-27 MeV were found to be predominantly excited by ΔL=1{\Delta}L=1 transitions. The strength distribution of spin-dipole transitions with ΔS=1{\Delta}S=1 and ΔL=1{\Delta}L=1 were deduced. The obtained distribution was compared with a recent shell model calculation. Experimental results are reasonably explained by distorted-wave impulse approximation calculations with the shell model wave functions.Comment: 28 pages RevTex, including 9 figures, to be published in Phys. Rev. C.; a typo in Eq. (3b) was correcte

    Phase equilibria and glass transition in colloidal systems with short-ranged attractive interactions. Application to protein crystallization

    Full text link
    We have studied a model of a complex fluid consisting of particles interacting through a hard core and a short range attractive potential of both Yukawa and square-well form. Using a hybrid method, including a self-consistent and quite accurate approximation for the liquid integral equation in the case of the Yukawa fluid, perturbation theory to evaluate the crystal free energies, and mode-coupling theory of the glass transition, we determine both the equilibrium phase diagram of the system and the lines of equilibrium between the supercooled fluid and the glass phases. For these potentials, we study the phase diagrams for different values of the potential range, the ratio of the range of the interaction to the diameter of the repulsive core being the main control parameter. Our arguments are relevant to a variety of systems, from dense colloidal systems with depletion forces, through particle gels, nano-particle aggregation, and globular protein crystallization.Comment: 20 pages, 10 figure

    Neutron Scattering study of Sr_2Cu_3O_4Cl_2

    Full text link
    We report a neutron scattering study on the tetragonal compound Sr_2Cu_3O_4Cl_2, which has two-dimensional (2D) interpenetrating Cu_I and Cu_{II} subsystems, each forming a S=1/2 square lattice quantum Heisenberg antiferromagnet (SLQHA). The mean-field ground state is degenerate, since the inter-subsystem interactions are geometrically frustrated. Magnetic neutron scattering experiments show that quantum fluctuations lift the degeneracy and cause a 2D Ising ordering of the Cu_{II} subsystem. Due to quantum fluctuations a dramatic increase of the Cu_I out-of-plane spin-wave gap is also observed. The temperature dependence and the dispersion of the spin-wave energy are quantitatively explained by spin-wave calculations which include quantum fluctuations explicitly. The values for the nearest-neighbor superexchange interactions between the Cu_I and Cu_{II} ions and between the Cu_{II} ions are determined experimentally to be J_{I-II} = -10(2)meV and J_{II}= 10.5(5)meV, respectively. Due to its small exchange interaction, J_{II}, the 2D dispersion of the Cu_{II} SLQHA can be measured over the whole Brillouin zone with thermal neutrons, and a novel dispersion at the zone boundary, predicted by theory, is confirmed. The instantaneous magnetic correlation length of the Cu_{II} SLQHA is obtained up to a very high temperature, T/J_{II}\approx 0.75. This result is compared with several theoretical predictions as well as recent experiments on the S=1/2 SLQHA.Comment: Figures and equations are rearrange
    corecore