784 research outputs found

    Single vortex states in a confined Bose-Einstein condensate

    Full text link
    It has been demonstrated experimentally that non-axially symmetric vortices precess around the centre of a Bose-Einstein condensate. Two types of single vortex states have been observed, usually referred to as the S-vortex and the U-vortex. We study theoretically the single vortex excitations in spherical and elongated condensates as a function of the interaction strength. We solve numerically the Gross-Pitaevskii equation and calculate the angular momentum as a function of precession frequency. The existence of two types of vortices means that we have two different precession frequencies for each angular momentum value. As the interaction strength increases the vortex lines bend and the precession frequencies shift to lower values. We establish that for given angular momentum the S-vortex has higher energy than the U-vortex in a rotating elongated condensate. We show that the S-vortex is related to the solitonic vortex which is a nonlinear excitation in the nonrotating system. For small interaction strengths the S-vortex is related to the dark soliton. In the dilute limit a lowest Landau level calculation provides an analytic description of these vortex modes in terms of the harmonic oscillator states

    Enhancement of the scissors mode of an expanding Bose-Einstein condensate

    Full text link
    We study the time-evolution of the scissors mode of a Bose-Einstein condensate during the ballistic expansion after release from the magnetic trap. We show that despite the nontrivial character of the superfluid expansion, the sinusoidal behavior of the scissor oscillations is recovered after an asymptotic expansion, with an enhancement of the final amplitude. We investigate this phenomenon with a condensate held in an elongated magnetostatic potential, whose particular shape allows for the excitation of the scissors mode.Comment: RevTeX, 5 figure

    Anharmonic parametric excitation in optical lattices

    Get PDF
    We study both experimentally and theoretically the losses induced by parametric excitation in far-off-resonance optical lattices. The atoms confined in a 1D sinusoidal lattice present an excitation spectrum and dynamics substantially different from those expected for a harmonic potential. We develop a model based on the actual atomic Hamiltonian in the lattice and we introduce semiempirically a broadening of the width of lattice energy bands which can physically arise from inhomogeneities and fluctuations of the lattice, and also from atomic collisions. The position and strength of the parametric resonances and the evolution of the number of trapped atoms are satisfactorily described by our model.Comment: 7 pages, 5 figure

    Unstable regimes for a Bose-Einstein condensate in an optical lattice

    Full text link
    We report on the experimental characterization of energetic and dynamical instability, two mechanisms responsible for the breakdown of Bloch waves in a Bose-Einstein condensate interacting with a 1D optical lattice. A clear separation of these two regimes is obtained performing measurements at different temperatures of the atomic sample. The timescales of the two processes have been determined by measuring the losses induced in the condensate. A simple phenomenological model is introduced for energetic instability while a full comparison is made between the experiment and the 3D Gross-Pitaevskii theory that accounts for dynamical instability

    Anderson localization of elementary excitations in a one dimensional Bose-Einstein condensate

    Full text link
    We study the elementary excitations of a transversely confined Bose-Einstein condensate in presence of a weak axial random potential. We determine the localization length (i) in the hydrodynamical low energy regime, for a domain of linear densities ranging from the Tonks-Girardeau to the transverse Thomas-Fermi regime, in the case of a white noise potential and (ii) for all the range of energies, in the ``one-dimensional mean field regime'', in the case where the randomness is induced by a series of randomly placed point-like impurities. We discuss our results in view of recent experiments in elongated BEC systems.Comment: 11 pages, 6 figures. Final printed versio

    Dimensional Effects on Solitonic Matter and Optical Waves with Normal and Anomalous Dispersion

    Full text link
    We investigate bright and dark solitons with anomalous or normal dispersion and under transverse harmonic confinement. In matter waves, positive atomic mass implies anomalous dispersion (kinetic spreading) while negative mass gives normal dispersion (kinetic shrinking). We find that, contrary to the strictly one-dimensional case, the axial and transverse profiles of these solitons crucially depend on the strength of the nonlinearity and on their dispersive properties. In particular, we show that, like bright solitons with anomalous dispersion, also dark solitons with normal dispersion disappear at a critical axial density. Our predictions are useful for the study of atomic matter waves in Bose-Einstein condensates and also for optical bullets in inhomogeneous Kerr media.Comment: To be published in Journal of Physics B: At. Mol. Opt. Phy

    Hermitian vector fields and special phase functions

    Full text link
    We start by analysing the Lie algebra of Hermitian vector fields of a Hermitian line bundle. Then, we specify the base space of the above bundle by considering a Galilei, or an Einstein spacetime. Namely, in the first case, we consider, a fibred manifold over absolute time equipped with a spacelike Riemannian metric, a spacetime connection (preserving the time fibring and the spacelike metric) and an electromagnetic field. In the second case, we consider a spacetime equipped with a Lorentzian metric and an electromagnetic field. In both cases, we exhibit a natural Lie algebra of special phase functions and show that the Lie algebra of Hermitian vector fields turns out to be naturally isomorphic to the Lie algebra of special phase functions. Eventually, we compare the Galilei and Einstein cases

    A multiband envelope function model for quantum transport in a tunneling diode

    Full text link
    We present a simple model for electron transport in semiconductor devices that exhibit tunneling between the conduction and valence bands. The model is derived within the usual Bloch-Wannier formalism by a k-expansion, and is formulated in terms of a set of coupled equations for the electron envelope functions. Its connection with other models present in literature is discussed. As an application we consider the case of a Resonant Interband Tunneling Diode, demonstrating the ability of the model to reproduce the expected behaviour of the current as a function of the applied voltageComment: 8 pages, 4 figure

    Finite temperature effects on the collapse of trapped Bose-Fermi mixtures

    Full text link
    By using the self-consistent Hartree-Fock-Bogoliubov-Popov theory, we present a detailed study of the mean-field stability of spherically trapped Bose-Fermi mixtures at finite temperature. We find that, by increasing the temperature, the critical particle number of bosons (or fermions) and the critical attractive Bose-Fermi scattering length increase, leading to a significant stabilization of the mixture.Comment: 5 pages, 4 figures; minor changes, proof version, to appear in Phys. Rev. A (Nov. 1, 2003

    Cooling atoms in an optical trap by selective parametric excitation

    Get PDF
    We demonstrate the possibility of energy-selective removal of cold atoms from a tight optical trap by means of parametric excitation of the trap vibrational modes. Taking advantage of the anharmonicity of the trap potential, we selectively remove the most energetic trapped atoms or excite those at the bottom of the trap by tuning the parametric modulation frequency. This process, which had been previously identified as a possible source of heating, also appears to be a robust way for forcing evaporative cooling in anharmonic traps.Comment: 5 pages, 5 figure
    corecore