It has been demonstrated experimentally that non-axially symmetric vortices
precess around the centre of a Bose-Einstein condensate. Two types of single
vortex states have been observed, usually referred to as the S-vortex and the
U-vortex. We study theoretically the single vortex excitations in spherical and
elongated condensates as a function of the interaction strength. We solve
numerically the Gross-Pitaevskii equation and calculate the angular momentum as
a function of precession frequency. The existence of two types of vortices
means that we have two different precession frequencies for each angular
momentum value. As the interaction strength increases the vortex lines bend and
the precession frequencies shift to lower values. We establish that for given
angular momentum the S-vortex has higher energy than the U-vortex in a rotating
elongated condensate. We show that the S-vortex is related to the solitonic
vortex which is a nonlinear excitation in the nonrotating system. For small
interaction strengths the S-vortex is related to the dark soliton. In the
dilute limit a lowest Landau level calculation provides an analytic description
of these vortex modes in terms of the harmonic oscillator states