546 research outputs found

    Alternative pest control approaches NPV for pod borer control and its uptake in Nepal

    Get PDF
    Pod borer is the most serious pest of chickpea in Nepal and its control based upon chemical insecticides alone has met major problems of resistance. There is a clear need for alternative pod borer control techniques. One of the most promising alternative controls i nucleopolyhedrovirus or NPV This is effective, safe and has bee adopted in a number of countries as part of the national pod bore IPM strategy. The chickpea IPM project has conducted evaluation of NPV in Nepal and results show it to be as effective or better than existing chemical control. However, if promotion of NPV in Nepal for pod borer control were to be adopted, a policy for the supply of NPV would need to be developed. Importation is feasible but local production would probably be cheaper. Several models of local production exist including farmer production, village production, state or extension service production and commercial private sector production and these models need to be evaluated for adoption in Nepal. A national system of regulation for NPV would also need to be developed

    Beta decay of 71,73Co; probing single particle states approaching doubly magic 78Ni

    Full text link
    Low-energy excited states in 71,73Ni populated via the {\beta} decay of 71,73Co were investigated in an experiment performed at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University (MSU). Detailed analysis led to the construction of level schemes of 71,73Ni, which are interpreted using systematics and analyzed using shell model calculations. The 5/2- states attributed to the the f5/2 orbital and positive parity 5/2+ and 7/2+ states from the g9/2 orbital have been identified in both 71,73Ni. In 71Ni the location of a 1/2- {\beta}-decaying isomer is proposed and limits are suggested as to the location of the isomer in 73Ni. The location of positive parity cluster states are also identified in 71,73Ni. Beta-delayed neutron branching ratios obtained from this data are given for both 71,73Co.Comment: Accepted for publication in PR

    Orbital dependent nucleonic pairing in the lightest known isotopes of tin

    Full text link
    By studying the 109Xe-->105Te-->101Sn superallowed alpha-decay chain, we observe low-lying states in 101Sn, the one-neutron system outside doubly magic 100Sn. We find that the spins of the ground state (J = 7=2) and first excited state (J = 5=2) in 101Sn are reversed with respect to the traditional level ordering postulated for 103Sn and the heavier tin isotopes. Through simple arguments and state-of-the-art shell model calculations we explain this unexpected switch in terms of a transition from the single-particle regime to the collective mode in which orbital-dependent pairing correlations, dominate.Comment: 5 pages 3 figure

    Realistic Shell-Model Calculations for Proton-Rich N=50 Isotones

    Get PDF
    The structure of the N=50 isotones 98Cd, 97Ag, and 96Pd is studied in terms of shell model employing a realistic effective interaction derived from the Bonn-A nucleon-nucleon potential. The single-hole energies are fixed by resorting to an analysis of the low-energy spectra of the isotones with A>= 91. Comparison shows that our results are in very satisfactory agreement with the available experimental data. This supports confidence in the predictions of our calculationsComment: 8 pages, 3 figures, to be published on Journal of Physics

    Precision measurement of 65^{65}Zn electron-capture decays with the KDK coincidence setup

    Full text link
    65^{65}Zn is a common calibration source, moreover used as a radioactive tracer in medical and biological studies. In many cases, γ\gamma-spectroscopy is a preferred method of 65^{65}Zn standardization, which relies directly on the branching ratio of Jπ(65Zn)=5/2Jπ(65Cu)=5/2J \pi (^{65}\text{Zn} ) = 5/2^- \rightarrow J \pi (^{65}\text{Cu}) = 5/2^- via electron capture (EC*). We measure the relative intensity of this branch to that proceeding directly to the ground state (EC0^0) using a novel coincidence technique, finding IEC0/IEC*=0.9684±0.0018I_{\text{EC}^0}/I_{\text{EC*}} = 0.9684 \pm 0.0018. Re-evaluating the decay scheme of 65^{65}Zn by adopting the commonly evaluated branching ratio of Iβ+=1.4271(7)%I_{\beta^+}= 1.4271(7)\% we obtain IEC*=(50.08±0.06)%I_{\text{EC*}} = (50.08 \pm 0.06)\%, and I_\text{EC^0} = (48.50 \pm 0.06) \%. The associated 1115 keV gamma intensity agrees with the previously reported NNDC value, and is now accessible with a factor of ~2 increase in precision. Our re-evaluation removes reliance on the deduction of this gamma intensity from numerous measurements, some of which disagree and depend directly on total activity determination. The KDK experimental technique provides a new avenue for verification or updates to the decay scheme of 65^{65}Zn, and is applicable to other isotopes.Comment: Uses similar methodology to the 40K measurement by the KDK Collaboration (Stukel et al PRL 2023, arXiv:2211.10319; Hariasz et al PRC 2023, arXiv:2211.10343), as such there may be some similarity in figures and tex

    Action Recognition with a Bio--Inspired Feedforward Motion Processing Model: The Richness of Center-Surround Interactions

    Get PDF
    International audienceHere we show that reproducing the functional properties of MT cells with various center--surround interactions enriches motion representation and improves the action recognition performance. To do so, we propose a simplified bio--inspired model of the motion pathway in primates: It is a feedforward model restricted to V1-MT cortical layers, cortical cells cover the visual space with a foveated structure, and more importantly, we reproduce some of the richness of center-surround interactions of MT cells. Interestingly, as observed in neurophysiology, our MT cells not only behave like simple velocity detectors, but also respond to several kinds of motion contrasts. Results show that this diversity of motion representation at the MT level is a major advantage for an action recognition task. Defining motion maps as our feature vectors, we used a standard classification method on the Weizmann database: We obtained an average recognition rate of 98.9%, which is superior to the recent results by Jhuang et al. (2007). These promising results encourage us to further develop bio--inspired models incorporating other brain mechanisms and cortical layers in order to deal with more complex videos

    The Nab Experiment: A Precision Measurement of Unpolarized Neutron Beta Decay

    Get PDF
    Neutron beta decay is one of the most fundamental processes in nuclear physics and provides sensitive means to uncover the details of the weak interaction. Neutron beta decay can evaluate the ratio of axial-vector to vector coupling constants in the standard model, λ=gA/gV\lambda = g_A / g_V, through multiple decay correlations. The Nab experiment will carry out measurements of the electron-neutrino correlation parameter aa with a precision of δa/a=103\delta a / a = 10^{-3} and the Fierz interference term bb to δb=3×103\delta b = 3\times10^{-3} in unpolarized free neutron beta decay. These results, along with a more precise measurement of the neutron lifetime, aim to deliver an independent determination of the ratio λ\lambda with a precision of δλ/λ=0.03%\delta \lambda / \lambda = 0.03\% that will allow an evaluation of VudV_{ud} and sensitively test CKM unitarity, independent of nuclear models. Nab utilizes a novel, long asymmetric spectrometer that guides the decay electron and proton to two large area silicon detectors in order to precisely determine the electron energy and an estimation of the proton momentum from the proton time of flight. The Nab spectrometer is being commissioned at the Fundamental Neutron Physics Beamline at the Spallation Neutron Source at Oak Ridge National Lab. We present an overview of the Nab experiment and recent updates on the spectrometer, analysis, and systematic effects.Comment: Presented at PPNS201
    corecore