1,781 research outputs found

    Directionality in van der Waals Interactions: the Case of 4-Acetylbiphenyl Adsorbed on Au(111)

    Get PDF
    We report on a theoretical study of adsorption of 4-Acetylbiphenyl molecule and its diffusion properties in the main directions of the Au(111) surface. Structural changes of the molecule, which are induced by adsorption lead to stronger conjugation of the π\pi-system. The molecule is adsorbed in a flat configuration on the surface with roughly the same binding energy along the [110] and [112] directions, in good agreement with experiments. Furthermore, the diffusion barriers imply an important directionality of the molecule-surface interactions. This is somewhat surprising because our calculations show that the prevailing interaction is the long-range molecule-surface van der Waals interaction. Despite of its weakness, the van der Waals interaction discriminates the preferential adsorption sites as well as imposes a molecular geometry that needs to be considered when rationalizing the diffusion barriers

    Quenching of magnetic excitations in single adsorbates at surfaces: Mn on CuN/Cu(100)

    Get PDF
    The lifetimes of spin excitations of Mn adsorbates on CuN/Cu(100) are computed from first-principles. The theory is based on a strong-coupling T-matrix approach that evaluates the decay of a spin excitation due to electron-hole pair creation. Using a previously developed theory [Phys. Rev. Lett. {\bf 103}, 176601 (2009) and Phys. Rev. B {\bf 81}, 165423 (2010)], we compute the excitation rates by a tunneling current for all the Mn spin states. A rate equation approach permits us to simulate the experimental results by Loth and co-workers [Nat. Phys. {\bf 6}, 340 (2010)] for large tunnelling currents, taking into account the finite population of excited states. Our simulations give us insight into the spin dynamics, in particular in the way polarized electrons can reveal the existence of an excited state population. In addition, it reveals that the excitation process occurs in a way very different from the deexcitation one. Indeed, while excitation by tunnelling electrons proceeds via the s and p electrons of the adsorbate, deexcitation mainly involves the d electrons

    Size effects in surface reconstructed <100><100> and <110>< 110> silicon nanowires

    Full text link
    The geometrical and electronic structure properties of and and silicon nanowires in the absence of surface passivation are studied by means of density-functional calculations. As we have shown in a recent publication [R. Rurali and N. Lorente, Phys. Rev. Lett. {\bf 94}, 026805 (2005)] the reconstruction of facets can give rise to surface metallic states. In this work, we analyze the dependence of geometric and electronic structure features on the size of the wire and on the growth direction

    Metallic and semi-metallic <100> silicon nanowires

    Get PDF
    Silicon nanowires grown along the -direction with a bulk Si core are studied with density functional calculations. Two surface reconstructions prevail after exploration of a large fraction of the phase space of nanowire reconstructions. Despite their energetical equivalence, one of the reconstructions is found to be strongly metallic while the other one is semi-metallic. This electronic-structure behavior is dictated by the particular surface states of each reconstruction. These results imply that doping is not required in order to obtain good conducting Si nanowires.Comment: 13 pages, 4 figures; Phys. Rev. Lett., in pres

    A cotunneling mechanism for all-electrical Electron Spin Resonance of single adsorbed atoms

    Get PDF
    The recent development of all-electrical electron spin resonance (ESR) in a scanning tunneling microscope (STM) setup has opened the door to vast applications. Despite the fast growing number of experimental works on STM-ESR, the fundamental principles remains unclear. By using a cotunneling picture, we show that the spin resonance signal can be explained as a time-dependent variation of the tunnel barrier induced by the alternating electric driving field. We demonstrate how this variation translates into the resonant frequency response of the direct current. Our cotunneling theory explains the main experimental findings. Namely, the linear dependence of the Rabi flop rate with the alternating bias amplitude, the absence of resonant response for spin-unpolarized currents, and the weak dependence on the actual atomic species.Comment: 11 pages, 3 figure

    Raising and lowering operators, factorization and differential/difference operators of hypergeometric type

    Full text link
    Starting from Rodrigues formula we present a general construction of raising and lowering operators for orthogonal polynomials of continuous and discrete variable on uniform lattice. In order to have these operators mutually adjoint we introduce orthonormal functions with respect to the scalar product of unit weight. Using the Infeld-Hull factorization method, we generate from the raising and lowering operators the second order self-adjoint differential/difference operator of hypergeometric type.Comment: LaTeX, 24 pages, iopart style (late submission
    • …
    corecore